Содержание
Самодельный рекуператор для загородного дома с КПД 80% / Хабр
Наступила зима, и я решил усовершенствовать систему вентиляции в моем загородном доме. До этого момента ее практически не было, все вентилирование осуществлялось за счет открывания окон, выбрасывания теплого отработанного воздуха и впускания холодного свежего с улицы. Я что-то слышал о системах рекуперации (recuperatio — обратное получение, возвращение), позволяющих не просто выбрасывать тепло вместе с воздухом, а использовать его для нагревания входящего свежего воздуха с заметной экономией энергии на отоплении. Подумав — а почему бы и нет, я решил попробовать сделать такую систему самостоятельно.
Теоретическая часть очень проста.
Рекуператор — это ящик со слоями фольги или чего то подобного, находящимися на небольшом расстоянии друг от друга. По четным промежуткам между слоями из дома выходит теплый отработанный воздух, по нечетным заходит с улицы свежий холодный. Потоки идут навстречу друг другу, при этом теплый отработанный воздух из дома, проходя по промежуткам между фольгой, соприкасаясь через фольгу с холодным воздухом с улицы, постепенно отдает ему свое тепло и выходя из рекуператора остывает почти до температуры входящего. Входящий с улицы воздух, в свою очередь, поглотив тепло выходящего из дома воздуха, нагревается почти до температуры воздуха в помещении.
Расчетная экономия на отоплении входящего с улицы воздуха ожидалась в районе 1-2 квт, при объеме циркуляции через вентиляцию с рекуператором около 100-150м3/час, что делало проект теоретически рентабельным и окупаемым.
Подумав и порисовав
я приступил к закупкам материалов и изготовлению устройства.
Для создания слоев я использовал фольгу для утепления парилки в бане толщиной 50 мкм, для проставок между слоями — трехмиллиметровый линолеум, разрезанный на полоски шириной 10-15мм. Для склеивания и герметизации — обычный хороший силиконовый герметик под пистолет, для звуко- и гидроизоляции внутри рекуператора — пластиковые сэндвич панели, для внешней стенки ящика — фанеру 12мм, а в качестве вентиляторов — обычные канальные вентиляторы диаметром 125мм производительностью до 188м3/ч.
Процесс изготовления состоял из двух основных этапов — изготовления ящика с внутренним слоем из пластиковой сэндвич панели
и приклеивания слоев фольги с проставками на силиконовый герметик. На одно только приклеивание слоев фольги с их вырезанием ушло дня четыре, не меньше.
Слоев вышло 43 штуки, общая площадь фольги в рекуператоре около 17 м2.
Дальше идет монтаж ящика на стену в топочной и подключение его к системе вентиляции.
Запуск, измерение температур воздуха в помещении, на улице, на выходе из рекуператора в дом и на выходе рекуператора на улицу, а также дальнейший расчет КПД по формуле КПД=(t[рек]-t[внешн])/(t[внутр]-t[внешн]) показали очень неплохой КПД — около 80%, притом что для коммерческих рекуператоров нормальным является КПД в районе 65-80%.
В чем секрет? В огромной площади теплообмена и удачной конструкции. 17м2 фольги против 4-5м2 у магазинных рекуператоров. Призматическая форма теплообменника вместо 2-3 квадратных теплообменников позволяет более эффективно использовать площадь и объем внутри рекуператора. Расчеты тепловой «мощности» рекуператора показали около полутора киловатт экономии энергии на обогрев воздуха.
Видео процесса создания рекуператора:
Ekocoil | Пластинчатые рекуператоры
ООО Инженерное Оборудование и Системы:
Адрес: 111024, г. Москва, 2-я улица Энтузиастов, дом 5, корпус 3, территория ОАО «Московского Завода Компрессор».
Метро: Авиамоторная / МЦК: Андроновка.
Телефон/Факс офиса: +7(495)540-70-75, +7(926)834-90-16.
Телефон/Факс склада: +7(495)231-21-64.
Электронная почта: [email protected].
Часы работы офиса: Пн-Пт с 09-30 до 18-30 (без обеда).
Часы работы склада: Пн-Пт с 09-30 до 17-00 (без обеда).
ОГРН: 1157746242774
Проезд (10-15 минут пешком от метро / МЦК):
Без автотранспорта от станции метро «Авиамоторная»: выход из метро к платформе электричек «Новая» (прямо по подземному переходу от дверей метро и почти сразу же наверх по ближайшей лестнице слева), далее пешком до данной платформы (пройти под автомобильным мостом), перейти через железнодорожные пути по надземному переходу к «1-ой улице Энтузиастов», далее по «2-ой улице Энтузиастов» до главной проходной ОАО «Московского Завода Компрессор».
В помещении справа от шлагбаума, предъявив паспорт, попросить пропуск для пешехода в ООО «Инженерное Оборудование и Системы», далее по территории завода согласно схеме на пропуске. Выход пешком с территории ОАО «Московского Завода Компрессор» осуществляется через ту же (главную) проходную (необходимо сдать на проходной вышеуказанный пропуск, с проставленной в ООО «Инженерное Оборудование и Системы» печатью).
Без автотранспорта от станции МЦК «Андроновка»: пешком по прямой улице вдоль железнодорожных путей до «2-ой улицы Энтузиастов», далее по «2-ой улице Энтузиастов» до главной проходной ОАО «Московского Завода Компрессор».
В помещении справа от шлагбаума, предъявив паспорт, попросить пропуск для пешехода в ООО «Инженерное Оборудование и Системы», далее по территории завода согласно схеме на пропуске. Выход пешком с территории ОАО «Московского Завода Компрессор» осуществляется через ту же (главную) проходную (необходимо сдать на проходной вышеуказанный пропуск, с проставленной в ООО «Инженерное Оборудование и Системы» печатью).
На автотранспорте: из центра: с «Шоссе Энтузиастов» съезд на «1-ую улицу Энтузиастов». Со стороны МКАДа направо под мост по «Проезду Энтузиастов» на «1-ую улицу Энтузиастов». Далее по «2-ой улице Энтузиастов» до шлагбаума главной проходной ОАО «Московского Завода Компрессор». В помещении справа от шлагбаума, предъявив документы, попросить пропуск для машины в ООО «Инженерное Оборудование», далее по территории согласно схеме на пропуске.
Выезд автомашины с территории ОАО «Московского Завода Компрессор» осуществляется через вторую проходную завода, которая выходит на «1-ую улицу Энтузиастов». От здания ООО «Инженерное Оборудование и Системы» к ней указывают путь таблички с надписью «Выезд». Необходимо сдать на второй проходной завода вышеуказанный пропуск на машину, с проставленной в ООО «Инженерное Оборудование и Системы» печатью.
Важно: администрация ОАО «Московского Завода Компрессор» не допускает на территорию завода машины каршеринга. Справа от главной проходной завода расположена парковка для автотранспорта.
ООО Инженерное Оборудование и Системы:
Адрес: 197110, Россия, Санкт-Петербург, Левашовский пр., дом 12, литер А, офис 215.
Телефон / Факс: +7(812)320-13-40, +7(812)602-04-69.
Электронная почта: [email protected].
Часы работы: Пн-Пт с 09-00 до 18-00.
Проезд:
От ст. метро Петроградская (15 мин пешком) направо по Каменоостровскому проспекту, мимо Дк Ленсовета до площади Шевченко, далее налево через площадь, до Левашовского пр. Пройти 1000м по левой стороне улицы до дома №12 , ориентир — на фасаде вывеска «супермаркет, компьютеры».
От ст. метро Чкаловская (10 мин пешком) направо по Чкаловскому пр. до пересечения с ул. Пудожская, повернуть налево, идти перекрестка с ул. Лодейно-Польской, далее направо до т-образного перекрестка, угловое здание по правую сторону (на фасаде вывеска «супермаркет, компьютеры»).
Склад: адрес тот же, въезд во двор через ворота со стороны Газовой ул. Для выписки пропуска на въезд необходимо заранее сообщить номер машины.
ООО Инженерное Оборудование и Системы:
Адрес: 630091, Россия, Новосибирск, улица Бориса Богаткова, дом 63/2.
Телефоны: +7(913)916-29-07, +7(913)913-32-50.
Электронная почта: [email protected].
Часы работы: Пн-Пт с 09-00 до 18-00.
ООО Инженерное Оборудование и Системы:
Адрес: 344037, Россия, Ростов-на-Дону, 24-я линия, дом 20.
Телефоны: +7(958)574-41-91, +7(863)253-65-22, +7(863)253-68-54.
Электронная почта: [email protected].
Часы работы: Пн-Пт с 09-30 до 18-30.
Рекуператоры воздуха. Виды и принцип работы
С развитием технологий энергосбережения на рынке систем вентиляции и кондиционирования особую популярность получили рекуператоры воздуха – устройства для передачи тепловой энергии от вытяжного воздуха к приточному. В рамках данной статьи мы расскажем о принципе работы, видах и устройстве рекуператоров, их преимуществах и недостатках и критериях подбора.
Что такое рекуператор и каковы его функции
Рекуператор – это устройство, которое предназначено для передачи тепловой энергии от вытяжного выбрасываемого воздуха к приточному воздуху, подаваемому в помещение. В данном случае под тепловой энергией понимается как тепловая, так и холодильная, то есть вытяжной воздух может отдавать приточному как своё тепло, так и свой холод, соответственно, нагревая или охлаждая его.
Основной функцией рекуператора является получение полезной энергии от удаляемого воздуха из помещения. Эта функция дополняется условием: потоки не должны смешиваться, то есть приточный воздух не должен хоть сколько-нибудь значительно загрязняться отработанным вытяжным воздухом. В системах вентиляции и кондиционирования такое получение энергии актуально как зимой, так и летом.
В зимнее время задачей рекуператора является осуществление «бесплатного» нагрева приточного воздуха за счёт вытяжного. Для этого холодный поток воздуха с улицы и тёплый вытяжной поток воздуха из помещения подаются в теплообменник, где вытяжной воздух нагревает приточный. Так как вытяжной воздух всё равно был бы выброшен на улицу, можно говорить о том, что данный нагрев происходит «бесплатно».
Для вентиляционной установки такой нагрев позволяет существенно сэкономить на мощности электрического или водяного калорифера. Предположим, температура подаваемого в помещение воздуха зимой должна составлять +18 °С, а наружная температура составляет -26 °С. Таким образом, мощность нагревателя в системе без рекуператора следовало бы рассчитывать исходя из нагрева на 18-(26)=44°С.
При использовании рекуператора приточный воздух может быть нагрет за счёт вытяжного воздуха, например, до температуры +10 °С. В этом случае мощность нагревателя следовало бы рассчитывать исходя из нагрева всего на 18-10=8 °С. Так как мощность нагревателя прямо пропорциональна разнице температур, то рекуператор позволил бы сэкономить (44-8)/44 = 82% мощности вентустановки.
Виды, устройство и принцип работы рекуператоров
Какого бы вида он ни был, рекуператор по своей сути – это теплообменник. Это может быть один теплообменник, в котором приточный и вытяжной потоки воздуха обмениваются теплом через тонкие стенки, или два теплообменника. Во втором случае в первом теплообменнике вытяжной воздух отдаёт своё тепло некоторому промежуточному теплоносителю, а во втором теплообменнике этот промежуточный теплоноситель отдаёт своё тепло приточному воздуху.
Выделим основные виды рекуператоров и рассмотрим каждый из них в отдельности:
- Роторный рекуператор
- Пластинчатый перекрестно-точный рекуператор
- Рекуператор с промежуточным теплоносителем
- Камерный рекуператор
- Фреоновый рекуператор
Роторный рекуператор
Роторные рекуператоры DANTEX имеют одни из самых высоких показателей эффективности на рынке. Они представляют собой большое колесо (ротор), ось вращения которого совпадает с линиями движения воздуха, а расположена она между потоками таким образом, что половина ротора находится в зоне вытяжного воздуха, а вторая половина – в зоне приточного воздуха.
Ротор не является сплошным и представляет собой набор соединенных между собой пластин. Воздух может свободно проходить между пластинами, в буквальном смысле, сквозь ротор.
Роторный рекуператор
Медленно вращаясь, некоторая часть ротора сначала контактирует с вытяжным воздухом, который её нагревает. Спустя некоторое время эта часть ротора переходит в зону приточного воздуха, где нагревает его, отдавая накопленное ранее тепло. Сразу после этого она вновь переходит в зону вытяжного воздуха и нагревается. Цикл замыкается.
Во время перехода из зоны вытяжного воздуха в зону приточного и обратно, ротор между пластинами увлекает за собой некоторое количество воздуха, то есть, наблюдается смешивание потоков. Однако на практике смешивание потоков в роторных рекуператорах DANTEX настолько мало, что им обычно пренебрегают (составляет около 5%).
Пластинчатый перекрестно-точный рекуператор
Ещё один вид рекуператоров, предназначенных для применения в моноблочных приточно-вытяжных установках – это перекрестно-точные рекуператоры на базе пластинчатого теплообменника.
В отличие от роторных, данные аппараты не имеют движущихся частей. Они представляют собой пластинчатый теплообменник, по каналам которого движется приточный и вытяжной потоки воздуха. Эти каналы чередуются. Таким образом, каждый поток вытяжного воздуха через стенки контактирует с двумя потоками приточного воздуха, а каждый поток приточного – с двумя потоками вытяжного.
Приточно-вытяжные установки с пластинчатым рекуператором
Перекрестно-точные рекуператоры DANTEX спроектированы таким образом, чтобы максимизировать площадь контакта между потоками. Именно этим и объясняется высокая эффективность теплообмена и, как следствие, высокая эффективность рекуперации тепла (до 70%).
Помимо обычных перекрестно-точных, в вентустановках DANTEX также применяются гексагональные рекуператоры. Они представляют собой смесь перекрестно-точного и противоточного теплообменников. Противоточные аппараты имеют более высокую эффективность, поэтому такой симбиоз идёт на пользу, и эффективность рекуперации вырастает до 77%.
Гексагональные пластинчатые рекуператоры в приточно-вытяжных установках
Рекуператор с промежуточным теплоносителем
Третий вид рекуператоров – аппараты с промежуточным теплоносителем. Такие установки имеют два ключевых преимущества. Во-первых, они позволяют реализовать принципы рекуперации для раздельных и даже удалённых друг от друга приточных и вытяжных установок. Во-вторых, ими могут быть дополнены существующие системы вентиляции, которые изначально не предполагали рекуперацию тепла.
Итак, рекуператор с промежуточным теплоносителем представляет собой два теплообменника, устанавливаемых, соответственно, в приточной и вытяжной системах вентиляции, которые соединены трубопроводами с теплоносителем.
Рекуператор с промежуточным теплоносителем
Рекуператор с промежуточным теплоносителем
Зимой вытяжной воздух нагревает теплоноситель. Далее он при помощи насоса перекачивается в теплообменник приточной установки, где отдаёт своё тепло, нагревая приточный воздух. После этого он вновь направляется в теплообменник вытяжной установки.
Расстояние, на которое может перемещаться теплоноситель, практически не ограничено, поэтому вентустановки могут находиться на значительном удалении друг от друга, например, одна в подвале здания, а вторая – на кровле. Не стоит забывать, что увеличение трассы теплоносителя требует установки более мощного насоса, повышает стоимость трубопроводов и их монтажа, а также повышает потери тепла. Таким образом, чрезмерное увеличение трассы ведёт к удорожанию системы и снижению её эффективности. Тем не менее, в рамках здания такие системы достаточно широко распространены и окупают себя.
Камерный рекуператор
В рекуператорах камерного типа роль теплопередающей поверхности играет стенка камеры. При помощи специальной заслонки траектория движения вытяжного воздуха регулируется таким образом, что он проходит через одну половину камеры и нагревает её, а приточный воздух – через другую половину камеры.
Вскоре заслонка поворачивается, и теперь приточный воздух проходит через первую (нагретую) половину камеры, за счёт чего нагревается сам. В свою очередь вытяжной воздух проходит через вторую (остывшую) половину камеры и нагревает её. Далее заслонка возвращается в прежнее положение, и процессы повторяются.
Фреоновый рекуператор
Во фреоновых рекуператорах задействованы сразу два физических явления – смена агрегатного состояния вещества, и тот факт, что жидкость имеет более высокую плотность, нежели пар, вследствие чего жидкость всегда оказывается в нижней части ёмкости. Рассмотрим эти явления более подробно.
Во фреоновом рекуператоре между потоками вытяжного и приточного воздуха расположены кольцеобразные трубки с хладагентом. Поток вытяжного воздуха всегда должен быть ниже приточного и контактировать с нижней частью трубок. В них накапливается жидкий хладагент, который забирает тепло из вытяжного воздуха, выкипает и поднимается наверх, в зону приточного воздуха. Там он отдаёт своё тепло, конденсируется и опускается вниз.
Фреоновый рекуператор
Эффективность рекуператора
Важнейшей характеристикой рекуператора является его эффективность. Она показывает, как сильно рекуператор смог нагреть приточный воздух относительно идеального варианта. За идеальный вариант при этом принимается случай, когда приточный воздух нагрет до температуры вытяжного воздуха. На практике такой вариант недостижим, и нагрев происходит до некой промежуточной температуры Tп. Формула эффективности выглядит следующим образом:
K= (T_П-Т_Н)/(T_В-Т_Н ), где:
- ТП – температура приточного воздуха после рекуператора, °С,
- ТН – температура наружного воздуха (приточный воздух до рекуператора), °С,
- ТВ – температура вытяжного воздуха до рекуператора, °С.
Данная формула учитывает изменение явного тепла в потоках воздуха. Однако у потоков может меняться и относительная влажность, и тогда лучше прибегать к расчёту эффективности рекуператора по полному теплу. Формула схожа по виду с предыдущей, но отталкивается от энтальпий потоков воздуха:
K= (I_П-I_Н)/(I_В-I_Н ), где:
- IП – энтальпия приточного воздуха после рекуператора, °С,
- IН – энтальпия наружного воздуха (приточный воздух до рекуператора), °С,
- IВ – энтальпия вытяжного воздуха до рекуператора, °С.
Первая формула позволяет быстро оценить эффективность рекуперации. Для более точных результатов следует использовать вторую формулу.
Преимущества и недостатки рекуператоров разных типов
Преимущество рекуператоров очевидно – они позволяют существенно сэкономить на нагреве приточного воздуха зимой и охлаждении приточного воздуха летом.
Среди недостатков рекуператоров выделяют следующие:
- Они создают дополнительное аэродинамическое сопротивление в сети. Действительно, как любой другой элемент в сети вентиляции, рекуператоры имеют некоторое сопротивление, которое следует учитывать при выборе вентилятора. Впрочем, это сопротивление не велико (обычно не более 100 Па), и к существенному увеличению мощности вентилятора не приводит.
- Рекуператоры повышают как стоимость вентиляционной установки, так и стоимость её обслуживания. Как и любое другое решение, направленное на повышение энергоэффективности системы, рекуператоры стоят определенных денег и требуют регулярного технического обслуживания. Однако опыт многократно доказал, что затраты на рекуперацию тепла гораздо ниже получаемой выгоды.
- Роторные, камерные и в гораздо меньшей степени пластинчатые рекуператоры имеют один недостаток, который может быть критичным на некоторых объектах – в них возможны перетечки потоков воздуха. В этом случае опасность представляет перетекание вытяжного воздуха в приточный. Такие перетечки нежелательны в системах вентиляции чистых помещений и не допустимы, например, в инфекционных отделениях больниц и операционных. Причиной служит опасность перетекания вирусов, которые попали в вытяжку из какого-либо помещения, в приточный поток воздуха с последующим распространением по всем помещениям объекта. Как результат, на таких объектах применяют рекуператоры с промежуточным теплоносителем или фреоновые рекуператоры.
- Рекуператоры увеличивают габариты вентиляционной установки. В первую очередь это касается пластинчатых рекуператоров, так как они представляют собой воздухо-воздушные теплообменники и имеют достаточно крупные размеры. Кроме того, это касается рекуператоров с промежуточным теплоносителем ввиду наличия двух отдельных теплообменников, двух линий трубопроводов и узлов обвязки возле каждого из теплообменников.
Выбор типа рекуператора
При выборе типа рекуператора следует учитывать несколько факторов:
- Возможность совмещения приточной и вытяжной установки в одном корпусе
- Габариты установки
- Желаемая эффективность
- Возможность небольших перетечек
- Цена
В прежние годы большое распространение имели рекуператоры с промежуточным теплоносителем. Сегодня их всё чаще заменяют роторными. В небольших приточно-вытяжных установках (для квартиры, коттеджа или маленького офиса или магазина) применяются пластинчатые перекрестно-точные рекуператоры. Наконец, на объектах, где перетекание вытяжного воздуха в зону притока не допустимо, предпочтение следует отдавать рекуператорам с промежуточным теплоносителем или фреоновым рекуператорам.
Рекуператор что это такое? Назначение, преимущества, устройство рекуператора воздуха
Тепло возвращается
Когда, как не зимой, мы вспоминаем теплые летние деньки и ждем возвращения тепла. Но, как говорил известный советский биолог Иван Владимирович Мичурин «мы не можем ждать милостей от природы, взять их у нее — наша задача». Этот лозунг, адресованный плодоводам, давно принят на вооружение производителями энергосберегающего оборудования, которые берут у природы максимум возможного, сводя к нулю наносимый ей урон. Сегодня в центре нашего внимания рекуператор — устройство, позволяющее возвращать тепло.
Recuperatio & ventilatio
В теплотехнике строительства темы рекуперации и вентиляции неразрывно связаны, потому что возврат тепла (recuperatio — «возвращение») происходит из нагретого в помещении и «выбрасываемого» в процессе вентиляции наружу воздуха.
В застройках советских времен вопрос организации вентиляции в жилых домах не стоял так остро, как сегодня. Несовершенство оконных конструкций, с одной стороны, вынуждало население заклеивать окна зимой, но с другой обеспечивало естественную циркуляцию воздуха. С заменой окон на пластиковые или более совершенные деревянные тема вентиляции становится все более актуальной.
При использовании естественной вентиляции для достижения необходимой интенсивности циркуляции воздушных масс окна должны быть открыты круглосуточно, что недостижимо в холодное время года. Именно поэтому более правильным и рациональным подходом считается устройство принудительной вентиляции. Иногда, например, в производственных помещениях, без нее просто невозможно обойтись.
Современное жилищное строительство все больше разворачивается в сторону энергоэффективности, но зачастую в погоне за экономией владельцы коттеджей, загородных домов или квартир вкладывают массу средств в утепление и герметизацию жилья, забывая об обратной стороне — необходимости притока свежего воздуха в помещение. Обеспечить и грамотный воздухообмен, и энергоэффективность позволяет принудительно-вытяжная вентиляция с рекуперацией тепла.
Рекуператор — это…
По сути рекуператор воздуха представляет собой теплообменник, в котором выходящий из помещения нагретый воздух отдает большую часть своего тепла холодному воздуху, входящему с улицы. То есть выходящий воздух нагревает входящий.
«Рынок рекуператоров в нашей стране довольно молод и долгое время был ориентирован исключительно на производство крупных установок мощностью 3 000–20 000 куб. м для промышленного сектора, а также для крупных деловых комплексов и бассейнов, где механическая вентиляция всегда была необходима по нормам. Но чаще эти установки работали лишь на автоматическую подачу и удаление воздуха, а догревался он централизованными системами отопления. Что касается жилищного и коммерческого строительства (в т.ч. и малоэтажного), то еще пять лет назад «Яндекс. Поиск» не выдавал практически ни одного реального предложения по рекуператорам этого типа (кроме шведских роторных), и путь к поставщику был долог и тернист. Теперь ситуация постепенно меняется, и купить рекуператор больше не проблема» (Светлана Дувинг, http://green-city.su).
РЕКУПЕРАТОР ПОДОГРЕВАЕТ ПОСТУПАЮЩИЙ В ПОМЕЩЕНИЕ ХОЛОДНЫЙ ВОЗДУХ ЗА СЧЕТ ТЕПЛА, ПОЛУЧАЕМОГО ОТ ВЫТЯЖНОГО ВОЗДУХА. А ЛЕТОМ НАОБОРОТ – ОХЛАЖДАЕТ ПРИТОЧНЫЙ ВОЗДУХ. И ВСЕ ЭТО ПРАКТИЧЕСКИ БЕЗ ЗАТРАТ!
Важнейшая характеристика рекуператора определяется эффективностью рекуперации, или КПД. Зная КПД рекуператора, можно определить, насколько подогреется уличный воздух. Это зависит не только от КПД, но и от температур — наружной и внутренней.
t (после рекуператора) = (t (внутри помещения) — t (на улице)) x K (КПД рекуператора) + t (на улице)
Например, при КПД, равном 77%, температуре внутри помещения 20°C, на улице — 0°C температура рекупирируемого воздуха составит 15,4°C.
Приятный сюрприз — рекуператор способен не только нагревать приточный воздух, но и охлаждать его. Летом, когда в помещении работает кондиционер, при помощи рекуператора можно добиться того, чтобы с улицы поступал уже охлажденный воздух.
t (после рекуператора) = t (на улице) + (t (внутри помещения) — t (на улице)) x K (КПД рекуператора)
То есть при уличной температуре в 35°C и температуре в помещении 21°C рекуператор остудит поступающий воздух до 24°C.
Казалось бы, есть отопительный котел для обогрева, кондиционер для охлаждения, зачем еще один прибор, который все равно не сможет полностью обеспечить необходимый климат в помещении? Ответ прост: рекуператору для подогрева и охлаждения воздуха не нужен энергоноситель. Поэтому использование рекуператора — это в первую очередь реальная экономия средств.
Коэффициент полезного действия рекуператоров может колебаться в широком диапазоне: от 30 до 96%. Естественно, чем он выше, тем выше энергосберегающие свойства прибора. КПД рекуператора во многом определяется его конструкцией.
СУЩЕСТВУЕТ ПЯТЬ ОСНОВНЫХ ТИПОВ КОНСТРУКЦИЙ РЕКУПЕРАТОРОВ ВОЗДУХА. ИЗ НИХ НАИБОЛЕЕ РАСПРОСТРАНЕННЫМИ ЯВЛЯЮТСЯ ПРИБОРЫ ПЛАСТИНЧАТОГО ТИПА.
Видовое разнообразие
Несмотря на казалось бы небольшую распространенность рекуператоров, по принципу устройства выделяют несколько видов приборов:
1. Пластинчатые рекуператоры
2. Роторные рекуператоры
3. Рекуператоры с промежуточным теплоносителем
4. Камерные рекуператоры
5. Тепловые трубы
Пластинчатый рекуператор — самый простой тип устройства. Теплообменник прибора представляет собой кассету, оснащенную множеством тонких листов, которые могут быть выполнены из различных материалов: оцинкованной стали, алюминиевой фольги, пластика или специальной бумаги. Листы могут быть как гладкими, так и гофрированными.
В состав рекуперационной системы пластинчатого типа входят:
• основной блок с пластинами;
• вентилятор;
• система отвода конденсата, неизбежно образующегося на пластинах;
• специальный перепускной клапан, регулирующий интенсивность воздушных потоков.
Важной положительной конструктивной особенностью пластинчатого рекуператора является полное отсутствие подвижных деталей. КПД пластинчатых рекуператоров достаточно высок и зависит от вида используемых пластин:
• Алюминиевые пластины или теплообменники из оцинкованной стали пользуются достаточно высокой популярностью из-за относительно невысокой стоимости. Однако они регулярно нуждаются в использовании режима оттаивания.
• Пластиковые теплообменники обладают более высоким коэффициентом полезного действия, но и стоят значительно дороже.
• Пластины из специальной бумаги также отличаются высокой эффективностью, но такие теплообменники нельзя применять в помещениях с высоким уровнем влажности (бассейны, автомойки, некоторые промышленные помещения), поскольку конденсат довольно легко преодолевает стенки кассеты. Используются также и рекуператоры с двойной бумажной кассетой. Их КПД существенно выше, за счет дополнительного прогрева воздуха, но они также боятся большого уровня влажности воздуха.
Объективности ради нужно сказать, что в двадцатиградусные морозы пластинчатый рекуператор обмерзнет и заметно снизит свою эффективность. Для того, чтобы КПД рекуператора оставался на высоком уровне, поступающий наружный воздух должен быть не ниже –5… – 7°С. А так как на большей части территории России температура значительные периоды времени ниже этих отметок, то для сохранения КПД рекуператора требуется использование дополнительного оборудования, которое позволяет догревать воздух до нужных температур.
Следующий по популярности тип рекуператора — роторный. Основная часть данного прибора — роторный теплообменник, вращающийся с определенной скоростью. Вращаясь, теплообменник нагревается в зоне вытяжного канала, а затем охлаждается в зоне приточного канала. В итоге тепло из вытяжного воздуха передается в приточный. Также возвращается часть влаги в результате конденсации из вытяжного воздуха и испарения в потоке приточного воздуха с улицы. Роторные рекуператоры обладают более высоким КПД, чем пластинчатые. Кроме того, их можно применять при более низких температурах, вплоть до —20… —25°С, без установки дополнительных устройств.
Вместе с тем роторные рекуператоры имеют ряд недостатков. Первый — это передача вытяжного воздуха в приток. В микроканалах роторного рекуператора поочередно проходят то вытяжной, то приточный потоки воздуха — часть вытяжного воздуха попадает в приток. Для минимизации этого явления на роторные рекуператоры устанавливаются продувочные сектора, где микроканалы рекуператора продуваются приточным воздухом, который сразу отправляется обратно в вытяжку, но при таком действии снижается общий КПД.
Сложная конструкция роторного теплообменника включает в себя сам ротор, ремень, привод ротора. Чем больше составляющих, тем чаще техобслуживание и вероятность выхода из строя. Это второй недостаток роторных систем. Ну и наконец, привод роторного рекуператора потребляет электроэнергию, то есть снижает экономию ресурсов, ради которой, собственно, и используется рекуператор.
Рекуператоры с промежуточным теплоносителем устроены совершенно иначе. Вода или водно-гликолевый раствор циркулируют между двумя теплообменниками, один из которых расположен в вытяжном канале, а другой в приточном. Теплоноситель нагревается удаляемым воздухом, а затем передает тепло приточному воздуху. Теплоноситель циркулирует в замкнутой системе, и отсутствует риск передачи загрязнений из удаляемого воздуха в приточный. Передача тепла может регулироваться изменением скорости циркуляции теплоносителя. Такой тип рекуператора оптимально подходит для модернизации уже существующих раздельных систем вентиляции.
Но и этот тип устройства имеет недостаток — довольно невысокий КПД. Рекуператоры с промежуточным теплоносителем позволяют вернуть от 25 до 55% тепла.
ВАЖНЕЙШАЯ ХАРАКТЕРИСТИКА РЕКУПЕРАТОРА – КПД, ИЛИ ЭФФЕКТИВНОСТЬ РЕКУПЕРАЦИИ – ПОКАЗЫВАЕТ, КАКОЙ ПРОЦЕНТ ТЕПЛА ПРИБОР МОЖЕТ ИЗВЛЕЧЬ ИЗ ВЫТЯЖНОГО ВОЗДУХА. ДЛЯ РЕКУПЕРАТОРОВ NIBE ЭТОТ ПОКАЗАТЕЛЬ ДОСТИГАЕТ 96%.
Отличительной особенностью камерных рекуператоров является наличие заслонки, разделяющей камеру теплообменника на две части. Высокий КПД (70–80%) достигается благодаря возможности изменения направления воздушного потока путем движения заслонки. К недостаткам камерных рекуператоров можно отнести небольшое смешивание потоков, передачу запахов и наличие подвижных деталей.
И наконец, завершают типологию рекуператоров приборы, состоящие из закрытой системы трубок, заполненных фреоном. При нагревании удаляемым воздухом фреон испаряется. Когда приточный холодный воздух проходит вдоль трубок, пар конденсируется и вновь превращается в жидкость. Эффективность такого типа рекуператоров составляет 50–70%.
NIBE выбирает пластинчатый
Вошедший в состав концерна NIBE в 2011 году датский завод Genvex был основан в 1974 году в Копенгагене. Именно тогда, в мае 1974 года, заводом была выпущена первая пассивная система утилизации тепла. За 40 лет развития Genvex существенно расширил линейку производимой продукции, однако системы вентиляции и рекуперации остаются ведущим направлением деятельности компании.
Разработанный в Дании рекуператор NIBE GV-HR110, который компания ЭВАН предлагает на российском рынке, это прибор пластинчатого типа с высочайшим КПД, достигающим 96%. В комплект поставки NIBE GV-HR110 входит противоточный теплообменник, энергосберегающие вентиляторы с загнутыми вперед лопастями, бесколлекторные электродвигатели, фильтр на всасывание и на откачку воздуха, контейнер для отвода конденсата, панель управления для полного контроля за системой.
В противоточном теплообменнике вытяжка и приток движутся в противоположных направлениях, при этом достигается максимальная площадь теплообмена и, соответственно, высокий КПД. Дополнительно NIBE GV-HR110 может быть укомплектован электрическим теплообменником для догрева воздуха с целью предотвращения обмерзания прибора при низких наружных температурах.
Рекуператор NIBE выпускается в двух модификациях: NIBE GV-HR110–250 (для домов площадью до 180 кв. м) и NIBE GV-HR110–400 (для домов площадью до 380 кв. м).
NIBE GV-HR110
КПД рекуператора (эффективность теплопередачи) — величина непостоянная и зависит от температуры приточного воздуха, температуры вытяжного воздуха, скорости воздушного потока и даже влажности в помещении. Зависимость КПД рекуператора NIBE GV-HR110 от скорости воздушного потока проиллюстрирована на рис. 1.
Рис. 1. Эффективность рекуперации тепла согласно сертификату EN 308 при равномерном потоке на стороне приточного и вытяжного воздуха*, при следующих условиях:
• температуре приточного воздуха 5°С
• температуре вытяжного воздуха 25°С
• влажности вытяжного воздуха
*без учета возможного обледенения при низких наружных температурах
По различным оценкам от 50 до 70% утечек тепла из помещения приходится на вентиляцию. Можно утеплять фасады, ставить энергосберегающие окна, оптимизировать отопительную систему, но все усилия будут сведены на нет открытыми форточками. Применение рекуператоров, кардинально снижающих вентиляционные теплопотери, это совершенно необходимый элемент энергоэффективного строительства.
Приточная вентиляция с подогревом воздуха за счет рекуперации
Рекуперация в вентиляции — это процесс передачи некоторых свойств удаляемого воздуха входящему потоку. Поступающий с улицы воздух необходимо подогревать, либо охлаждать, в зависимости от времени года. С этими задачами успешно справляется рекуператор Marley, при этом экономится энергия, расходуемая на отопление или кондиционирование.
Особенность работы рекуператора заключается в том, что выходящий из помещения воздух оставляет свое тепло в теплообменнике, а входящий с улицы свежий воздух поглощает это тепло и попадает в помещение уже подогретым. При необходимости охладить поступающий внутрь поток, происходит обратный процесс.
Существуют различные типы рекуператоров, каждый со своими особенностями, вариантами применения, плюсами и минусами.
Централизованная вентиляция с подогревом за счет рекуперации.
Пластинчатый рекуператор.
Пластинчатый рекуператор так же называют перекрестно-точным. Он имеет простую конструкцию без движущихся частей. Состоит этот рекуператор из пластин, между которыми, чередуясь, проходят потоки воздуха. Направления входящих и выходящих потоков могут быть разными. Параллельные потоки идут в одном направлении, противоточные – навстречу друг другу, перекрестные направлены перпендикулярно. Пластины изготавливают из металлической фольги, тонкого картона, целлюлозы, пластика. Различные материалы придают рекуператору определенные свойства. Металлические рекуператоры имеют хорошую теплопроводность, но достаточно тяжелы, что усложняет их монтаж. Их легко обслуживать, они прекрасно моются и чистятся, но подвержены коррозии. Рекуператор с картонными пластинами более легкий, но боится повышенной влажности, от которой деформируется, плохо чистится. Однако он способен передавать не только тепло, но и влагу из потока в поток. Целлюлозный теплообменник рекуператора сходен по свойствам с картонным. Пластиковые рекуператоры используют для небольших бытовых установок, по своим характеристикам они похожи на металлические, но более легкие.
Пластинчатые рекуператоры имеют коэффициент эффективности 50-70%, это относительно высокий показатель. Простота конструкции, компактность, отсутствие подвижных элементов – делают их применение и обслуживание несложными. К недостаткам пластинчатых рекуператоров можно отнести необходимость отвода образующегося конденсата и возможность его обмерзания.
Роторный рекуператор.
Роторный рекуператор разделен на две части – вытяжную и приточную. Между ними находится собственно ротор, вращающийся барабан, внутренняя полость которого заполнена металлической фольгой или проволокой, играющей роль теплообменника. В процессе вращения ротор поглощает тепло из выходящего потока и передает его входящему. Роторный рекуператор обладает эффективностью 75-90%. Его часто применяют для воздухообмена помещений с повышенной влажностью, поскольку его теплообменник – ротор – негигроскопичен. Ему, так же как и пластинчатому рекуператору, требуется отвод конденсата, но при этом проблема промерзания зимой не стоит, поскольку ротор, вращаясь, не позволяет образовываться наледи. Основным недостатком роторного рекуператора считают то, что они достаточно громоздкие, а вращающийся механизм подвержен износу.
Камерный рекуператор.
Этот рекуператор состоит из двух камер, разделенных заслонкой. Воздушные потоки – входящий и выходящий – проходят каждый через свой отсек. После нагрева камеры выходящего потока, заслонка меняет свое положение, и потоки меняются местами. Через нагретую камеру начинает поступать воздух в помещение, увеличивая свою температуру. Эффективность этого вида рекуператора высока – 70-85%. Недостатком его является некоторое перемешивание воздуха при смене положения заслонки.
Рекуператор с промежуточным теплоносителем.
Работа такого рекуператора основана на использовании теплоносителя, которым может быть вода или ее раствор, например гликолевый. Вода циркулирует между двумя теплообменниками, которые стоят отдельно друг от друга. Обычно теплообменники устанавливают в вентиляционных каналах, один — в приточном, другой — в вытяжном. Выходящий теплый воздух нагревает теплообменник, и водный раствор в нем. А тот, циркулируя, передает тепло входящему потоку.
Коэффициент эффективности рекуператора с промежуточным теплоносителем невелик, не более 50%. Но при его использовании совершенно исключается смешивание потоков. Такие рекуператоры применяют на производстве, в лабораториях.
Рекуператор на базе тепловых трубок.
Рекуператор с тепловыми трубками тоже использует теплоноситель. В данном случае это газ, имеющий свойства хладагента, обычно фреон. Им наполнены металлические ребристые трубки. Они герметичны, устанавливают их вертикально или под наклоном. Фреон стекает в нижнюю часть, через которую проходит теплый поток. Воздух нагревает трубки, в результате чего фреон закипает, переходит в газообразную фазу и поднимается вверх, забирая с собой тепло. В верхней части трубки обдуваются холодным потоком. Тепло передается воздуху, фреон конденсирует и стекает вниз. Конструкция таких рекуператоров проста, не имеет подвижных частей, но коэффициент эффективности невысок – не более 70%.
Перечисленные выше виды рекуператоров применяются в качестве элементов центральных систем вентиляции.
Децентрализованная вентиляция с подогревом за счет рекуперации.
Для частных домов, квартир и небольших офисов в последние годы широкое распространение получили децентрализованные системы вентиляции с рекуперацией тепла. Компактные приточно-вытяжные установки не требуют проектирования и проведения строительно-монтажных работ, не влияют на высоту потолка и не занимают место в комнатах – вся система устанавливается внутри стены. Монтаж осуществляется за несколько часов без нанесения вреда отделке помещений.
Новая модель Marley MEnV-180
Рекуператор Marley MEnV-180 оснащен высокоэффективным (85%) керамическим теплообменником, что позволяет эксплуатировать устройство при низких температурах – до -30 градусов!
Неоспоримым преимуществом компактных рекуператоров является отсутствие расходов на сервисное обслуживание. Промывка теплообменника и очистка фильтров осуществляются пользователем. Периодичность обслуживания рекуператора Marley – шесть месяцев. О необходимости обслуживания напомнит контрольная лампа.
Если Вы живете вблизи от трассы, или магистрали, желательно обслуживать воздушный фильтр рекуператора чаще, чем один раз в полгода. Очистка или замена фильтров рекуператора Marley MEnV-180 осуществляется из помещения и занимает не больше 15 минут.
Немаловажно, что сменные фильтры компания «МАРЛЕЙ-РУС» предоставляет своим клиентам совершенно бесплатно на протяжении трех лет!
Принцип работы вентиляции с рекуператором воздуха
Свежий воздух не только в промышленных, но и в жилых помещениях – это залог здоровья людей и безопасного микроклимата. Но, у классической вентиляции есть существенный недостаток – в зимний период вместе с воздухом уходит драгоценное тепло. В летние месяцы, если в помещении установлен кондиционер, он будет чаще включаться в работу. Чтобы не выбрасывать деньги вместе с потоком ветра, существует технология рекуперации воздуха.
Что такое рекуператор?
Простыми словами, это специальный теплообменник для воздуха. Он способен частично возвращать уходящее тепло в зимнее время, и охлаждать поступающий с улицы воздух в летний период. Рекуперация – простой и эффективный способ снизить затраты на подержание нормального микроклимата в помещениях.
Что такое рекуператор?
Это специальная труба с двумя стенками, в которой поступающий поток и вытяжной не смешиваются друг с другом. Но, так как они тесно взаимосвязаны тонкими стенками теплообменника, температура двух потоков выравнивается относительно друг друга. Кроме этого, теплообменник способен уменьшать влажность воздуха путем конденсации излишек влаги на холодных стенках рекуператора.
Технология, по сути, разновидность энергосберегающих систем, призванных уменьшить потери тепла. При этом сохраняется нормальная циркуляция воздуха в доме или любом другом помещении. Исследования показали, что грамотно продуманная система сохраняет до 70% уходящего тепла. Благодаря разнообразию конструкций, подобрать оптимальное устройство можно для любого помещения или целого здания.
Классифицировать рекуператоры можно по следующим различиям:
Роторный тип устройства с механическим приводом.
Прямоточные и противоточные теплоносители системы.
Пластинчатые, ребристые или трубчатые конструкции.
Для подогрева воздуха или жидкого теплоносителя.
Первая конструкция имеет самый высокий показатель КПД. Но, система имеет один значительный недостаток, большие размеры устройства требуют большие габариты приточно-вытяжной системы чтобы обеспечить эффективную работу пластинчатого ротора.
Пластинчатый рекуператор воздуха — одна из самых компактных и недорогих конструкций, не требующих значительных изменений в уже существующей системе вентиляции. Работает по принципу несмешиваемых потоков воздуха. Но, благодаря этому обладает одним существенным недостатком – в зимний период вытяжная труба очень часто обмерзает. Повышенная влажность мгновенно конденсируется на стенках трубы, и превращается в растущую корку льда. Тем не менее, рекуператор пользуется популярностью, и широко применяется практически во всех широтах.
Подробное устройство и принцип работы
Отсутствие трущихся и движущихся деталей делает устройство очень надёжным в повседневной эксплуатации. КПД достигает средних показателей 60% за счёт простого устройства теплообменника. Несмотря на некоторые недостатки, связанные с частым обмерзанием в зимний период, конструкция теплообменника достаточно простая. Чаще всего применяется в квартирах, жилых домах и отапливаемых гаражах.
Частично нивелировать обмерзание удаётся установкой вентилятора принудительного обдува. Который необходимо периодически включать в работу. Клапан байпас тоже может решить проблему обмерзания, но он немного усложнит конструкцию рекуператора.
Технология достаточно простая, и вполне реализуема своими силами. Для этого не потребуется покупать сложные материалы, и иметь сложный электрический и ручной инструмент.
Самодельный рекуператор
Любой современный дом просто обязан иметь качественную вентиляцию. Отделочные материалы и пластиковые окна делают его практически герметичным. Если не обеспечить нормальное движение воздушных масс, люди, проживающие в таком доме, будут страдать от повышенной влажности воздуха и частыми респираторными болезнями. Кроме этого, вопрос энергосбережения с каждым годом всё острее становится перед владельцами частной недвижимости. Поэтому вполне оправданно желание самостоятельно изготовить недорогой, но эффективный теплообменник.
Перед тем как приступить к изготовлению, необходимо купить 4 квадратных метра жести, можно оцинкованной, и разрезать её на пластины размером 30 х 20 см. Пластины должны быть максимально точными. Это необходимо для создания эффективного рекуператора с показателем КПД не ниже 50%.
Важно: лучше воспользоваться не ножницами по металлу, а болгаркой. Резка отрезным кругом ускорит процесс и даст большую точность, если сложить листы в несколько слоёв.
Пластины не должны создавать повышенного сопротивления воздуху, то есть, зазор между отдельно взятыми кусками жести минимум 4 мм. В идеальных условиях поток воздуха должен быть максимально близким к значению 1 м/с. При такой скорости как раз можно выйти на показатель эффективности в 50-60%. Уложенные пластины дополнительно герметизируют любым веществом с нейтральными характеристиками.
Основной корпус рекуператора делают из жести или более толстого металла. Дополнительно его упаковывают в деревянный короб из фанеры или ДВП. Между деревянной и стальной частью обязательно должна быть прослойка из утеплителя. На эту роль лучше использовать минеральную вату. Общая эффективная площадь пластин будет 3,3 м кубических, этого вполне достаточно для обмена воздуха 150 м3/ч.
Важно: в зимний период, когда температура будет опускаться ниже -10, выходной фланец будет частично обмерзать. Датчик изменения давления позволит своевременно направлять приточный воздух через байпас, давая возможность тёплому потоку избавить фланец от накопившегося льда.
Какой материал теплообменника рекуператора лучше?
Какой материал теплообменника рекуператора лучше?
Современные технологии HVAC делают ставку на использование рекуператоров воздуха для вентиляции помещений. Такого рода системы комплексно формируют воздухообмен и микроклимат, поставляя при этом свежий воздух в дома, офисы, школы и др здания.
Приточно-вытяжные системы вентиляции бывают разные по принципу действия:
– обеспечивают одновременный или попеременный приток и вытяжку;
– иметь разный тип и материал теплообменника.
Основные материалы, из которых производят теплообменники рекуператоров, выделяют медь, алюминий, целлюлозу и керамику. Материалы разные, однако направлены на достижение высокого энергосбережения.
Таблица 1. Материалы теплообменников
Материал теплообменника | Преимущества | Недостатки | Теплопроводность |
Керамика | керамический аккумулятор долго держит тепло | керамика долго остывает, а значит плохо подходит для теплопередачи | 10-15 |
Целлюлоза | малый вес теплообменника | низкая износостойкость материала, быстро впитывает неприятные запахи | 0,14 |
Алюминий | алюминиевый теплообменник легко мыть | алюминиевая пыль опасна для человека | 200 |
Медь | медь – природный антисептик, который противостоит роста бактерий, вирусов, грибков | при окислении медь теряет привлекательный блеск | 400 |
Керамика
Керамику используют для изготовления аккумуляторов тепла в компактных системах вентиляции реверсивного типа. Реверсивные проветриватели работают на приток и вытяжку попеременно: 30 секунд на приток, следующий цикл: 30 секунд вытяжки. Керамический аккумулятор получает тепло бросового воздуха, чтобы передать его приточному воздуху. Керамика долго держит тепло, что позволяет вентиляционной системе сохранять тепло при такой продолжительности цикла притока и вытяжки. Но, это преимущество оборачивается недостатком при рекуперации холодного воздуха в период отопления, так как керамика долго остывает.
Целлюлоза
Целлюлоза используется для изготовления теплообменников вентиляционных систем. Несмотря на незначительный вес такого теплообменника, существует ряд недостатков целлюлозных теплообменников: имеют низкую износостойкость; маленький срок годности; целлюлозные теплообменник не советуют использовать в помещениях, где могут быть неприятные запахи – целлюлоза мгновенно впитывает запах.
Алюминий
Алюминий легкий металл, который подвергается очистке, казалось бы, какие могут быть возражения подобных теплообменников? Несмотря на малый вес, хорошую теплопроводность и устойчивость к влаге, алюминиевый теплообменник вентиляционного прибора может нести потенциальную опасность. Частицы алюминия, попадая в организм человека, способны вызвать негативные последствия: заболевания органов дыхания, снижение иммунитета.
Медь
Рекуператоры Prana на основе медного теплообменника завоевали расположение аудитории и популярны на рынке вентоборудование. Почему? Медь сочетает в себе две важные функции теплообменника: естественную антисептику и высокую теплопередачу. Приточный воздух остается безопасным, внутри системы не возникает бактериологических, вирусных, грибковых загрязнений благодаря свойствам медной поверхности. Медь превосходит алюминий в теплопроводности в 2 раза: это означает высокое энергосбережение при одновременном разнонаправленном движении воздуха. Дополнительным плюсом медного рекуператора является способность сохранять как тепло, так и прохладу в помещении (в период кондиционирования).
Что такое Рекуператор — Теплообменник
Рекуператор — это тип теплообменника, который имеет отдельные пути потока для каждой жидкости вдоль их собственных каналов, а тепло передается через разделительные стенки. Тепловая инженерия
Рекуператор — теплообменник
В целом, теплообменники , используемые для регенерации, можно классифицировать как регенераторы или рекуператоры .
- Регенератор — это тип теплообменника, в котором тепло от горячей текучей среды периодически накапливается в теплонакопительной среде перед передачей холодной текучей среде.Он имеет единый путь потока, по которому попеременно проходят горячие и холодные жидкости.
- Рекуператор — это тип теплообменника, имеющий отдельных путей потока для каждой жидкости вдоль своих каналов, а тепло передается через разделительные стенки. Рекуператоры (например, экономайзеры) часто используются в энергетике для повышения общей эффективности термодинамических циклов. Например, в газотурбинном двигателе. Рекуператор передает часть отработанного тепла в выхлопных газах сжатому воздуху, таким образом предварительно нагревая его перед входом в камеру сгорания.Многие рекуператоры выполнены в виде противоточных теплообменников .
Регенерация тепла
В теории паровых турбин значительное увеличение теплового КПД паровой турбины может быть достигнуто за счет уменьшения количества топлива , которое необходимо добавить в котел. Это может быть выполнено путем передачи тепла (например, частично расширенного пара) от определенных секций паровой турбины, температура которого обычно намного выше температуры окружающей среды, питательной воде.Этот процесс известен как регенерации тепла , и для этой цели можно использовать регенераторов тепла . Иногда инженеры используют термин экономайзер , который представляет собой теплообменник, предназначенный для снижения энергопотребления, особенно в случае предварительного нагрева жидкости .
Как видно из статьи «Парогенератор», питательная вода (вторичный контур) на входе в парогенератор может иметь температуру около ~ 230 ° C (446 ° F) , а затем нагревается до температуры кипения эта жидкость (280 ° C; 536 ° F; 6,5 МПа) и испарилась.Но конденсат на выходе из конденсатора может иметь температуру около 40 ° C , поэтому регенерация тепла в типичном PWR значительна и очень важна:
- Регенерация тепла увеличивает тепловой КПД, поскольку большая часть теплового потока в цикле происходит при более высокая температура.
- Регенерация тепла вызывает уменьшение массового расхода через ступень низкого давления паровой турбины, таким образом повышая КПД изэнтропической турбины низкого давления. Обратите внимание, что на последней стадии расширения пар имеет очень высокий удельный объем.
- Рекуперация тепла приводит к повышению качества рабочего пара, так как стоки расположены по периферии корпуса турбины, где более высокая концентрация капель воды.
Анализ теплообменников
Теплообменники обычно используются в промышленности, и правильная конструкция теплообменника зависит от многих переменных. При анализе теплообменников часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор .Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона. Кроме того, инженеры также используют логарифмическую среднюю разность температур ( LMTD ) для определения движущей силы температуры для передачи тепла в теплообменниках.
Специальная ссылка: Джон Р. Том, Книга технических данных III. Росомаха Tube Inc. 2004.
& nbsp;
& nbsp;
Ссылки:
Теплопередача:
- Основы тепломассообмена, 7-е издание.Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
- Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
- Министерство энергетики США, термодинамики, теплопередачи и потока жидкости. Справочник Министерства энергетики США, Том 2 от 3 мая 2016 г.
Ядерная и реакторная физика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
- У. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
- Glasstone, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
- W.S.C. Уильямс. Ядерная физика и физика элементарных частиц. Clarendon Press; 1 издание, 1991 г., ISBN: 978-0198520467
- G.Р.Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
- Роберт Рид Берн, Введение в эксплуатацию ядерных реакторов, 1988 г.
- Министерство энергетики США, ядерной физики и теории реакторов. Справочник DOE по основам, тома 1 и 2. Январь 1993 г.
- Пол Ройсс, Нейтронная физика. EDP Sciences, 2008. ISBN: 978-2759800414.
Advanced Reactor Physics:
- К. О. Отт, В. А. Безелла, Введение в статику ядерных реакторов, Американское ядерное общество, пересмотренное издание (1989), 1989, ISBN: 0-894-48033-2.
- К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
- Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
- Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.
Надеемся, что эта статья, Рекуператор — Теплообменник , вам поможет. Если это так, даст нам на боковой панели.Основная цель этого сайта — помочь общественности узнать интересную и важную информацию о теплотехнике.
Рекуператоры — обзор | Темы ScienceDirect
6.5.3 Рекуператоры тепла
Рекуператоры тепла — это оборудование, которое позволяет утилизировать часть энергии кондиционированного воздуха внутри помещений, оборудованных системой механической вентиляции. Они состоят из теплообменника, который обеспечивает тепловой контакт отработанного воздуха внутри помещения с наружным воздухом для обновления.Зимой подогревают снаружи холодный воздух, а летом дают ему остыть; у них также есть фильтры, улучшающие качество воздуха. Таким образом, можно рекуперировать значительную часть энергии, используемой для нагрева или охлаждения воздуха в помещении, которая была бы полностью потеряна без рекуператора. Обычно они поставляются в виде коробок с некоторыми мундштуками, которые устанавливаются в системе вентиляции, включая вентиляторы для нагнетания и возврата, см. Рис. 6.25.
Рисунок 6.25. Внешний вид рекуператора тепла.
Есть три типа рекуператоров: с перекрестным потоком, , в котором горячий и холодный воздух циркулируют в перпендикулярных направлениях друг к другу, так что они пересекаются, с параллельным потоком и с роторным потоком , который имеет ротор с высокой теплоотдачей. инерция, которая вращается, приводимая в движение двигателем.
Технический кодекс устанавливает в своем Основном документе механическую или гибридную систему вентиляции жилых помещений. Следовательно, если вентиляция гибридного типа, размещение рекуператоров не может быть рассмотрено, так как приток не проходит через решетки и воздуховоды.Однако в третичном секторе, в тех местах, где воздушный поток, выбрасываемый наружу, превышает 0,5 м 3 / с, RITE требует наличия блоков рекуперации тепла.
Рассмотрим рекуператор тепла, в котором мы используем 0 и 1 для состояний всасываемого воздуха на входе и выходе рекуператора и 2 и 3 для состояний вытяжного воздуха также на входе и выходе рекуператора. Использование V˙ для объемного расхода воздуха, который вводится в здание, который, как мы предполагаем, совпадает с расходом, который удаляется (рекуператор сбалансирован), где ρ 0 , ρ i — плотности внешнего и внутреннего воздуха соответственно, и, учитывая, например, некоторые зимние условия, из баланса энергии можно записать уравнение
(6.85) V˙ϱi (h3 − h4) + W˙v = V˙ρ0 (h2 − h0) + Q˙l
, где мощность вентиляторов W˙v используется для преодоления потерь напора, а Q˙l — тепловые потери, которые приблизительно можно считать незначительными.
Работа рекуператора характеризуется его эффективностью , ASHRAE 1993 [48], которая, как мы знаем, определяется как теплообмен по отношению к максимуму, который мог бы быть обменен. Учитывая, что коэффициент теплоемкости для двух воздушных потоков одинаков, эффективность рекуператора составляет
(6.86) ε = T1 − T0T2 − T0
Эффективность меняется от часа к часу, поскольку внешняя температура меняется, поэтому более привлекательно определить среднюю сезонную эффективность , которая будет равна
(6,87) ε¯ = ∑i = 1HεihiH
, где h i — количество часов, в которых эффективность составляет ε i , а H — общее количество часов в периоде, например , отопления.Обращаясь теперь к определению эффективности, если мы примем во внимание, что рекуператор является адиабатическим, поскольку уменьшение энтальпии вытяжного воздуха совпадает с увеличением энтальпии воздуха для обновления, то его энергоэффективность будет равна единице. Теперь мы также можем определить КПД, считая энергию воздуха в помещении единственно доступной, поскольку энергия в состоянии 3 является частью потерь, это
(6,88) η = V˙ρ0 (h2 − h0) V˙ρih3 + W˙v = 1 − V˙ρih4 + Q˙lV˙ρih3 + W˙v
Как и для эффективности, наиболее интересным значением является средняя сезонная эффективность , которая рассчитывается аналогичным образом.
С другой стороны, беря баланс эксергии в рекуператоре, мы имеем
(6,89) V˙ρi (b2 − b3) + W˙v = V˙ϱ0 (b1 − b0) + I˙rec
, где термин I˙rec охватывает эксергию, связанную с потерями тепла и внутренними эксергетическими деструкциями из-за термической и механической необратимости. Фактически, поскольку эксергия воздуха в состоянии 3 окончательно разрушается, ее необходимо включить в термин необратимости, а поскольку состояние 0 — это окружающий воздух, баланс эксергии дает
(6.90) V˙ρ2b2 + W˙v = V˙ρ0b1 + I˙T, rec
при эксергетическом КПД оборудования
(6,91) φ = V˙ρ0b1V˙ρ2b2 + W˙v = 1 − I˙ T, recV˙ρ2b2 + W˙v
Таким же образом, как для КПД и энергоэффективности, мы рассчитаем средний сезонный КПД по эксергии рекуператора.
Рекуператор — теплообменник
Теплообмен:
- Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Франк П.Incropera. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
- Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
- Министерство энергетики, термодинамики, теплопередачи и потока жидкостей США. Справочник по основам DOE, том 2 из 3, май 2016 г.
Ядерная и реакторная физика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
- В. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
- Glasstone, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
- W.S.C. Уильямс. Ядерная физика и физика элементарных частиц. Clarendon Press; 1 издание, 1991 г., ISBN: 978-0198520467
- г.Р.Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
- Роберт Рид Берн, Введение в работу ядерного реактора, 1988.
- Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам DOE, том 1 и 2. Январь 1993 г.
- Пол Рейсс, нейтронная физика. EDP Sciences, 2008. ISBN: 978-2759800414.
Advanced Reactor Physics:
- К. О. Отт, В. А. Безелла, Введение в статику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
- К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
- Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
- Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.
Что такое теплообменник?
Теплообменники передают энергию в виде тепла от одной среды (например,г, газ или жидкость) к другому. Они используются в промышленности, в автомобилях и дома, в том числе в холодильниках и накопительных обогревателях. Теплообменники, специально разработанные для рекуперации тепла от отходов, выхлопных газов и жидкостей и последующего его повторного использования путем передачи его непосредственно в другую среду, известны как рекуператоры. Recair производит сердечник для вентиляторов с рекуперацией тепла воздух-воздух.
Как это работает?
В рекуперативном теплообменнике воздух-воздух входящий и выходящий потоки воздуха разделены твердой перегородкой (т.е.д, стенка воздуховода). При наличии разницы в температуре между двумя воздушными потоками тепло от более теплого воздушного потока будет передаваться через барьер более холодному воздушному потоку в соответствии со вторым законом термодинамики. Это означает, что тепло будет перемещаться из более горячего региона в более холодный регион. Таким образом, тепло от теплого несвежего воздуха, выходящего из здания, передается прохладному свежему воздуху, поступающему в здание, или наоборот.
Как узнать, что теплообменник работает нормально?
При установке системы вентиляции с рекуперацией тепла большинство людей хотят быть уверенными в том, что они не будут чувствовать холодных или горячих сквозняков: i.е, воздух, выходящий из теплообменника в дом, должен иметь более или менее ту же температуру, что и воздух, уже находящийся в доме. Но люди могли требовать большего. Тот факт, что теплообменник подает воздух более или менее правильной температуры, не означает, что он работает на 100% эффективно. Если он не рекуперирует столько тепла, сколько возможно, это не экономит вам столько денег, сколько могло бы! В течение всего срока службы теплообменника даже самые незначительные улучшения эффективности могут привести к значительной экономии ваших счетов за электроэнергию.Вот почему Recair постоянно стремится сделать свою продукцию максимально эффективной, чтобы все тепло передавалось от отработанного воздуха к поступающему, при этом отработанный воздух, выходящий из теплообменника, имеет ту же температуру, что и наружный воздух, а свежий воздух. попадание в комнату той же температуры, что и воздух внутри.
Как Recair достигает максимальной производительности?
Чтобы достичь этого идеала, мы работали с нашим отделом исследований и разработок, чтобы понять, каким условиям должен соответствовать теплообменник, чтобы обеспечить максимально возможную тепловую эффективность для обоих потоков воздуха.Благодаря научным испытаниям мы обнаружили, что максимально эффективный теплообменник должен соответствовать определенным критериям.
Критерии максимума производительность | Как Recair соответствует |
---|---|
Два воздушных потока должны находиться в чисто противотоке (т. Е. С потоками, движущимися в противоположных направлениях). | Воздушные потоки во всех ядрах Recair находятся в противотоке. |
Массовые потоки воздуха должны быть в идеальном балансе (т.е. масса воздуха, проходящего в каждом направлении за определенный период времени, должна быть одинаковой). | Recair рекомендует производителям блоков HRV обеспечить выполнение этого условия, чтобы сердечники Recair, установленные в их блоках, могли обеспечить превосходную производительность. |
Не должно быть утечки ни между воздушными потоками, ни между любым из воздушных потоков и внешней частью теплообменника. | Recair показывают незначительную утечку (в среднем <0,5%), что делает их одними из лучших на рынке. |
Чтобы два воздушных потока находились в максимально возможном контакте (через стенки воздуховода), площадь поверхности, доступная для теплообмена, должна быть как можно большей. | Благодаря своей уникальной конструкции с треугольными каналами, сердечники Recair имеют на большую площадь теплообмена на , чем другие изделия сравнимого размера (теплообменная емкость , > 50% выше, чем у квадратных каналов при той же потере давления ). |
Для максимальной теплоотдачи распределение воздушных потоков должно быть равномерным. | Небольшие треугольные каналы сердечников Recair обеспечивают противоток с равномерным распределением потока . |
Все тепло должно передаваться непосредственно через стенку воздуховода : тепло не должно проводиться по длине стенки воздуховода. | Для ограничения теплопроводности стенки воздуховодов в сердечниках Recair изготовлены из полистирола — материала с низкой теплопроводностью. |
Для удобства использования теплообменник должен быть как можно более компактным. | Recair обеспечивают наилучшее соотношение между теплообменной поверхностью и внутренним объемом. |
Для обеспечения экономической целесообразности затраты на материалы, производство, установку и использование должны быть минимальными. | Recair экономична, требует мало материалов, легка в транспортировке и проста в обращении. |
Слишком избегайте сквозняков: разница температур между поступающим свежим воздухом и воздухом в помещении не должна превышать 1,5 ° C. | При разнице температур внутри и снаружи в 30 ° C только ядро Recair достигает достаточной эффективности (> 95%, включая тепло вентилятора) для достижения этой цели. |
Если приведенная выше информация заинтересовала вас и вы хотите узнать больше, пожалуйста, заполните нашу контактную форму.
ТЕПЛООБМЕННИКИ
Теплообменник — это устройство, используемое для передачи тепла между двумя или более жидкостями. Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте.Устройства, включающие источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не считаются теплообменниками, хотя многие принципы, заложенные в их конструкции, одинаковы.
Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации. Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования, прежде всего, по конструкции.Оба рассмотрены здесь.
Классификация теплообменников по конфигурации потока
Существует четыре основных конфигурации потока:
На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях. Этот тип устройства потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность — это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).
Рисунок 1. Противоток.
В прямоточных теплообменниках потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоточный поток, но обеспечивает более равномерную температуру стенок.
Рисунок 2. Попутный поток.
По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.
Рисунок 3. Поперечный поток.
В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многопроходные теплообменники. (См., Например, рисунок 4.)
Рис. 4. Поперечный / противоточный поток.
Классификация теплообменников по конструкции
В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5).Первый уровень классификации состоит в том, чтобы разделить типы теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой жидкости, и жидкости протекают одновременно через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока. Регенеративный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.
Рисунок 5. Классификация теплообменников.
Регенеративные теплообменники
В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается, когда горячая жидкость проходит через нее (это известно как «горячий удар»).Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»). Регенеративные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).
Регенераторы в основном используются в системах рекуперации тепла газа / газа на электростанциях и других энергоемких отраслях. Два основных типа регенератора — статический и динамический. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не будут приняты особые меры, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.
Рекуперативные теплообменники
Существует много типов рекуперативных теплообменников, которые можно в широком смысле сгруппировать в непрямой контакт, прямой контакт и специальные. В теплообменниках с косвенным контактом теплоносители разделяются за счет использования трубок, пластин и т. Д.. Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.
В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, и они расположены в соответствии с классификацией, приведенной на рисунке 5.
В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.
Трубчатые теплообменники очень популярны из-за гибкости, которую проектировщик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубные теплообменники являются наиболее распространенными.
Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне труб, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:
Передняя часть — это место, где жидкость входит в трубную часть теплообменника.
Задний конец — это место, где жидкость на трубной стороне выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами на трубной стороне.
Пучок труб — состоит из трубок, трубных решеток, перегородок, стяжек и т. Д. Для удержания пучка вместе.
Кожух — содержит пучок труб.
Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормально, чтобы трубки были прямыми, но в некоторых криогенных применениях используются спиральные катушки или катушки Хэмпсона .Простая форма кожухотрубного теплообменника — это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, содержащихся внутри трубы большего размера. В самой сложной форме нет большой разницы между многотрубным двухтрубным теплообменником и кожухотрубным теплообменником. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга Э.А.Д. Сондерс [Saunders (1988)] дает хороший обзор трубчатых теплообменников.
К другим типам трубчатых теплообменников относятся:
Печи — технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.
Пластинчатые трубы — в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.
С электрическим нагревом — в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).
Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа для обеспечения дополнительной площади поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Они, как правило, используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.
Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков можно рассматривать как трубчатые или помещать в Рекуперативные «Особые предложения». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубы, где конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, например пропеллера или ленточного винтового импеллера. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.
Пластинчатые теплообменники разделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они скреплены болтами, припаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.
Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько рельефных прямоугольных пластин с отверстиями на углах для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая герметизирует пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду является проблемой, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не может протекать. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки всех пластин вместе, а затем приварки входных и выходных отверстий.
Рисунок 6. Классификация трубчатых теплообменников.
Рис. 7. Классификация пластинчатых теплообменников.
Рисунок 8. Кожухотрубный теплообменник.
Рисунок 9. Пластинчато-рамный теплообменник.
Пластинчато-ребристые теплообменники состоят из ребер или прокладок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны друг с другом. Их основное применение — сжижение газа из-за их способности работать с близкими температурами.
Пластинчатые теплообменники в некоторых отношениях аналогичны кожухотрубным. Прямоугольные трубы с закругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через зазоры между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются проточные каналы большего размера.
Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.
В теплообменниках этой категории не используется поверхность теплопередачи, из-за чего они часто дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник прямого контакта с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)
Наиболее легко узнаваемая форма теплообменника с прямым контактом — градирня с естественной тягой, которая встречается на многих электростанциях. Эти агрегаты состоят из большой приблизительно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода разбрызгивается на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема с этим и другими типами градирен с прямым контактом — это постоянная необходимость восполнения подачи охлаждающей воды за счет испарения.
Конденсаторы с прямым контактом иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Есть много вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость распыляется сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.
Впрыск пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло путем конденсации. Обычно конденсат не собирается.
Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другой вид прямого нагрева — это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, а выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.
Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в этом типе устройства вода распыляется по трубкам, а вентилятор всасывает воздух и воду по пучку труб. Вся система закрыта, и теплый влажный воздух обычно выбрасывается в атмосферу.
Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в тех случаях, когда отложения образуются на нагретых стенках сосуда с рубашкой.
Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегатов заключается в том, что и горячий, и холодный поток прерывистый. Чтобы преодолеть это и обеспечить непрерывную работу, требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.
В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно по каналам с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)
Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.
(1)
Это уравнение рассчитывает количество тепла, передаваемого через область dA, где T h и T c — локальные температуры горячей и холодной жидкости, α — местный коэффициент теплопередачи, а dA — локальная дополнительная площадь, на которой α основывается. Для плоской стены
(2)
где δ w — толщина стенки, а λ w — ее теплопроводность.
Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. Как только коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется как
(3)
где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением
(4)
Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения
(5)
где — общая тепловая нагрузка, U — средний общий коэффициент теплопередачи, а ΔT M — средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».
Расчет U и ΔT M требует информации о типе теплообменника, его геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, которое равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти расчеты и оптимизируют конструкцию.
Механические аспекты
Все типы теплообменников должны подвергаться механической конструкции в той или иной форме. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местным кодом конструкции сосуда высокого давления , код , например, ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к резервуару высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но, как правило, отдельные производители устанавливают свои собственные стандарты.
ССЫЛКИ
Гарланд, У. Дж. (1990) Частное сообщение.
Уокер, Г. (1982) Industrial Heat Exchangers-A Basic Guide , Hemisphere Publishing Corporation.
Rohsenow, W. M. и Hartnett, J. P. (1973) Handbook of Heat Transfer , New York: McGraw-Hill Book Company. DOI: 10.1016 / 0017-9310 (75) -9
Сондерс, Э. А. Д. (1988) Теплообменники — выбор, проектирование и строительство, Longman Scientific and Technical. DOI: 10.1016 / 0378-3820 (89) -5
Ассоциация производителей трубчатых теплообменников, (1988) (ТЕМА), седьмое издание. Кожухотрубные теплообменники .
Американский институт нефти (API) 661: Теплообменники с воздушным охлаждением для нефтяной промышленности .
Микротурбина Proe 90tm / рекуператор газовой турбины / тепло выхлопных газов
Теплообменник / Рекуперация отходящего тепла / Рекуператор цикла Ренкина
Proe 90 tm
Газовая турбина / Рекуператор цикла Ренкина
В
потребность в недорогом и высокопроизводительном рекуператоре была препятствием для
предыдущие восстановленные двигатели (начиная с оригинальных двигателей Джона Эрикссона).Proe
Power Systems преодолела это препятствие, а также разработала новую, более высокую температуру,
Рекуператор для наших двигателей Proe Afterburning и HRPG, а также для газовых турбин и циклов Ренкина!
Совершенно новая конструкция теплообменника (США
Патент 63 *) Нет, это не кожухотрубный теплообменник — вы видите
что это
Позволяет повысить температуру выхлопных газов турбины (815 ° C / 1500 ° F без
экзотические сплавы) для повышения эффективности двигателя
Инновации в конструкции минимизируют тепловые и
напряжения давления для повышения сопротивления ползучести и длительного срока службы при повышенных
температуры
Избегает тонкой фольги, ограничивающей
температура рекуператоров первичной поверхности из нержавеющей стали
до 650C / 1200F из-за ползучести и коррозии хрупкой фольги
Цельносварные: нет утечек газа, которые можно продуть —
дополнительно обеспечивает долгий срок службы при высоких температурах
Простая конструкция из доступной в продаже нержавеющей стали
материалы для труб и технологии орбитальной сварки, разработанные для кожухотрубных труб.
теплообменники
Кольцевые каналы типа «труба в трубе» приводят к нагреву микроканалов.
производительность теплообменника без необходимости дорогостоящих процессов травления и склеивания
Не требует специального инструмента и минимум машинных работ
Эффективность> 90%
D P / P ~ 3% -5% на стороне выпуска
Устойчивость к загрязнению выхлопными газами
Низкая стоимость производства, высокая прибыль
Отсутствие сложного или дорогостоящего изготовления ребер, пластин или первичной поверхности
Всякая сварка или пайка включает в себя самоклеящиеся детали с минимальным
Длина сварного шва для быстрой сборки и превосходной целостности стыков
Конкуренции препятствует широкая патентная защита
Отличное положение на рынке для первоначального производителя и
распределитель
Концепция газотурбинного рекуператора Proe 90 TM
низкая стоимость, высокая эффективность и низкое ограничение расхода теплообменника для использования
как на наших двигателях с дожиганием, так и на газовых турбинах других производителей
Двигатели в микротурбине с распределенной мощностью (от 30 до
50 кВт) Рынок.
Рекуператоры — это теплообменники (также иногда называемые
регенераторы), которые являются ключевым компонентом в рекуперации тепла сгорания, которое
в противном случае они попадут в выхлоп как на дожигателе Proe, так и в газовой турбине
Приложения. Рекуператоры тока для газовых турбин
применение — первичные поверхностные теплообменники, которые очень дороги в
производят и обычно восстанавливают от 70% до 80% выхлопных газов.
нагревать. Кроме того, низкая ползучесть и
коррозионная стойкость тонкой фольги, используемой в обычных рекуператорах первичной поверхности, ограничивает их температуру и ограничивает
потенциальный КПД двигателя. Proe
Power Systems ‘новый рекуператор Proe 90 TM обеспечивает
прочное, простое в изготовлении, высокотемпературное устройство, способное восстанавливать более
90% тепла выхлопных газов при минимальном противодавлении выхлопных газов.
* 13 мая 2002 г. Thousand Oaks CA .
Читать
наша пресса
Релиз о публикации патента на Рекуператор Проэ 90 (тм).
Дополнительную информацию можно получить по телефону:
Ричард Проешель
Президент
Proe Power
Systems, LLC
5072 Утро
MedinaOh54256-6747
США
Телефон: (800)315-0084 доб.600
Международный телефон: 1- (330) 723-4469 доб. 600
Факс: (330)723-4469
[email protected]
Газовая турбина с рекуператором MicroFire ™ Экономия топлива
Критическое требование для многих
беспилотные летательные аппараты — это улучшенная экономия топлива. Рекуператоры могут снизить расход топлива и расширить
долговечность полетов для БПЛА с газотурбинными двигателями. Рекуператор нагревает
сжатый воздух перед сгоранием, тем самым уменьшая количество топлива, необходимое для
нагрейте выхлопной поток и раскрутите силовую турбину.Frontline Aerospace имеет
разработали аддитивную конструкцию рекуператора, которая создает очень большие
коэффициенты теплопередачи с использованием микротурбуляторов в каждом слое
компактный теплообменник. Это приводит к очень маленьким сердечникам с низким давлением.
убытки. Фронтлайн-проекты подтвердили наш подход, и мы изготовили полноразмерные
рекуператоры для газовой турбины Rolls-Royce Model 250 и проверенные тепловые характеристики.
Использование аддитивного производства стало ключом к созданию прочных прямоугольных
и компактные сердечники теплообменника непрямоугольной формы.Создание заголовков для переноса
сжатый воздух в теплообменнике и выходе из него также может быть сложным и
аддитивное производство очень полезно. Использование в рекуператоре алюминия и титана
конструкция системы может дополнительно снизить вес и увеличить рекуператор
представление. Все эти Frontline
Аэрокосмические инновации способствуют увеличению дальности, выносливости и времени наработки.
станция для турбинных БПЛА.
Деталь рекуператора Microfire ™
Рекуператор MicroFire ™
Frontline представляет собой специальный высокотемпературный теплообменник с перекрестным потоком, который отбирает тепло из горячих выхлопных газов двигателя и передает его сжатому воздуху двигателя перед сгоранием.В зависимости от конкретной реализации это может улучшить общий тепловой КПД двигателя на целых 100%.
Исторически сложившаяся проблема с рекуператорами в авиационной технике связана с необходимостью в легких материалах с небольшими объемами и конструкциями, которые могут выдерживать давление и термический удар, обеспечивая при этом эффективность теплопередачи. На приведенном ниже графике показано огромное улучшение теплового КПД, которое возможно с рекуператорами.
Установлена 3D модель рекуператора.
Запатентованный рекуператор MicroFire ™ решает эти проблемы для самолетов.Он улучшает удельный расход топлива на целых 40% с очень низким перепадом давления и потерями мощности (менее 3%), и все это при весе рекуператора менее 50 фунтов для серии двигателей Rolls-Royce C20.
Это ключевая технология, позволяющая значительно увеличить срок службы вертолетных двигателей и снизить удельный расход топлива (SFC), а также сократить выбросы углеводородов.
- Microfire ™ Part
- Крупный план микроканалов
Рекуператор MicroFire ™ Краткое описание:
- Установка для модернизации газотурбинных двигателей
- Быстрая окупаемость и окупаемость инвестиций
- ~ 40% Экономия топлива
- Увеличенный запас хода и долговечность
Установка рекуператора MicroFire ™ для Rolls-Royce модели 250
- Содействовать тестированию и доработке рекуператора MicroFire
- Сбор инженерных данных для представления дополнительного сертификата типа FAA
- Обеспечение выгодных предложений для владельцев и операторов вертолетов
- Продвигать аспекты энергосбережения и снижения загрязнения с помощью рекуператоров MicroFire
Видео по теме