Технология бурение скважины: Технология бурения водозаборных скважин, виды бурения

Технология бурение скважины: Технология бурения водозаборных скважин, виды бурения

Содержание

Технология бурения водозаборных скважин, виды бурения

Бурение скважины на воду – сложный многоступенчатый процесс, состоящий из нескольких технологических этапов.

При поступлении заказа на бурение скважины, наш специалист проводит первичный анализ стоимости, основываясь на геологических данных компании и предполагаемой глубине бурения. Заказчику озвучивается приблизительный диапазон цен на услуги, а также уточняется дата посещения участка, удобная для вас. Участок предполагаемого бурения подвергается первичному осмотру, уточняются необходимые детали и назначается дата начала проведения работ.

В назначенный день на участок прибывает наш специалист, который окончательно выбирает место для бурения скважины. В это же время уточняется степень участия заказчика – у нашей компании есть все необходимое, чтобы провести данные работы “под ключ”, включая обустройство скважины, что позволяет вам планировать свое собственное время и избежать постоянного контроля работ на участке. А в будущем, при необходимости, можем проводить периодический осмотр и ремонт скважины.

После уточнения всех необходимых условий и составления договора отбирается бригада для работы и организуется выезд техники – и команда приступает к непосредственному бурению скважины.

Виды бурения скважин


  • Шнековое бурение


    Шнек представляет собой стальную трубу с навитой стальной спиралью – подобно штопору, шнек бурит породу вращательными движениями. Шнеки соединены между собой при помощи шпонок и резьбы. Подобное бурение – идеальный вариант для неглубоких скважин в песчаной и других мягких породах.



  • Роторное бурение


    Производится при помощи специального долота, вращающегося при помощи ротора, который располагается на поверхности. В процессе бурения буровой инструмент непрерывно охлаждается, а раскрошенная и резаная порода выносится при помощи глинистого раствора, воды либо сжатого воздуха.



  • Колонковое бурение


    Вращательным элементом служит стальная колонковая труба, имеющая твердосплавную коронку в основании. Порода бурится по краям трубы, заводится в центр и в дальнейшем выдувается при помощи сжатого воздуха. Колонковый метод широко используется также при лабораторных исследованиях, так как предоставляет породу в первозданном состоянии (выдуваемую из центра колонковой трубы).



  • Ударно-канатное бурение


    Наиболее простой способ: бурение производится забиванием трубы, поднимаемым грузом и с силой опускаемого на верх трубы. Сила удара достаточна для разрушения породы, которая удаляется из скважины обычной желонкой.

Перечисленные методы бурения скважин используются уже многие годы и отлично зарекомендовали свою эффективность, но в настоящее время специалисты нашей компании предпочитают наиболее современный и универсальный способ – вращательное бурение скважин по роторному методу. Роторное бурение скважин – наиболее быстрый способ с максимально высоким КПД.

Процесс бурения скважин

В процессе бурения скважин наблюдается отклонение ствола от вертикали вследствие геологических особенностей (угол залегания пластов, наличие твердых включений породы, тектонические нарушения и прочее). Также причиной отклонения могут стать технологические причины: неправильная центровка вышки, перекос бурильной колонны, чрезмерная осевая нагрузка и другие. Искривление ствола скважины наблюдается при любом способе бурения – но современный уровень технологий и большой опыт специалистов позволяет не допускать отклонения ствола скважины более чем на 2-3 градуса.

В компании «Бурвода 72» используется только современная профессиональная техника высокой точности, позволяющая максимально сократить угол отклонения. Высокоточное оборудование позволяет избежать технических неполадок в работе скважины и продлить срок ее службы.

Процесс бурения скважин заключается в последовательном разрушении поверхности забоя, производимом вращением бурового долота (породоразрушающего инструмента). Разрушенная в результате бурения порода выводится на поверхность при помощи специального раствора.

Затем производится поиск водонасыщенного горизонта. В случае непредвиденного отклонения от проекта (редкие случаи, возникающие, например, в удаленных малоизученных районах) производится согласование с клиентом дополнительных условий.

На завершающем этапе бурения проводится компрессорная прокачка скважины под высоким давлением, вызов притока и разглинизация – освоение скважины. Также проводится обязательный замер производительности, откачка до чистой воды, предоставляется устный отчет по бурению.

Заказчикам стоит помнить, что особенности бурения той или иной скважины могут отличаться в зависимости от участка, на котором ведутся работы. К примеру, не стоит использовать грунтовые воды, если объект находится в районе с высокой промышленной активностью – и наоборот, в отдаленном месте возможно бурение относительно неглубокой скважины. Опытные специалисты нашей компании учтут все возможные нюансы работы и помогут вам выбрать оптимальный вариант, а при необходимости установить систему очистки воды из скважины.

Для того, чтобы узнать приблизительную глубину скважины конкретно для вашего района, на нашем сайте представлена подробная карта бурения. Получить более точную и подробную информацию вы можете у наших операторов по номеру +7(3452) 930-317, а также оставив свой вопрос в разделе «Вопросы специалисту».

Остались вопросы? Звоните по телефону +7 930-317

Технология бурения скважин на воду



Прежде, чем заказать бурение скважины на воду, мы рекомендуем каждому домовладельцу ознакомиться с основными технологиями и способами бурения. Для чего это нужно? Ведь в любой фирме есть консультанты, которые объяснят чем одна технология бурения скважин на воду отличается от другой. В первую очередь это необходимо лично Вам. Система автономного водоснабжения делается на долгие годы и должна все это время быть источником комфорта, а не беспокойства. Даже базовые знания в области бурения позволят квалифицированно общаться с подрядчиками. Более точное представление о сложности поставленной задачи и способах ее решения позволит не только выбрать лучший метод бурения и обустройства скважины, но и оптимизировать затраты.


Технология бурения водяных скважин имеет различные варианты реализации. Среди них есть как уже устаревшие и низко эффективные, так и современные, использующие последние достижения науки, требующие дорогой и сложной техники. Организация автономного водоснабжения решает вполне определенный круг задач, что позволило частным буровикам и буровым компаниям выбрать оптимальные методы. Для создания индивидуальных скважин на воду используются три основных способа бурения:


  • ударно-канатное


  • шнековое


  • роторное


Ударно-канатное бурение — это устаревшая технология бурения. Метод медленный и технологически несовершенный. В основном используется для скважин небольшой глубины. Недостатки метода компенсируются его дешевизной, отсутствием необходимости использовать буровой раствор и организовывать свободный заезд для буровой установки. Но здесь лучше сразу выбрать, что для Вас выгоднее — долго и дешево, либо быстро и чуть дороже. Например, неглубокую и среднюю скважину можно быстро пробурить шнековым методом. Выбирая вариант «долго и дешево» учитывайте, что в таких условиях в рыхлых и неустойчивых грунтах возрастает риск обрушения стенок. Дешевизна ударно-канатного метода относительна. В сложных гидрогеологических условиях, либо при большой глубине скважины финансовые и трудозатраты могут резко возрасти.




установка АВБ-2М на шасси ГАЗ для ударно-канатного бурения


Технология ударно-канатного бурения очень проста. Тяжелое остроконечное или цилиндрическое долото при падении разрушает породу. Долото поднимается и опускается, углубляя выработку, цикл постоянно повторяется. Размельченную породу удаляют с помощью желонки. Компактность оборудования достигается за счет того, что для вертикального перемещения долота используется не жесткая буровая штанга, а гибкий металлический трос, намотанный на барабан. Если порода прочная, долото может быть утяжелено с помощью ударной штанги. Если грунт мягкий, до буровое долото и желонка могут быть объединены в один снаряд.


Технология бурения шнеком — одна из самых популярных для создания скважины на песок. Шнек — это так называемый архимедов винт, то есть сплошная винтовая поверхность, размещенная вдоль оси. Шнековая буровая установка может быть установлена на автомобильном шасси, в этом случае максимальная глубина скважин — до нескольких десятков метров.




компактный мотобур и шнек


Менее глубокие скважины бурятся малогабаритными шнековыми установками, которые можно перевезти в легковом пикапе. Простейший комплект для ручного шнекового бурения позволяет сделать скважину глубиной до 10 м. Компактность ручного оборудования дает возможность разместить его на участке без организации свободного заезда. Шнековое бурение используется в мягких и неплотных сухих грунтах. Скальная порода и даже отдельные валуны представляют для шнека непреодолимую преграду. Плывуны также сделают проходку невозможной.




шнек для буровой установки на автошасси


Благодаря своей доступности, шнековое бурение очень популярно у частных буровиков, чьими услугами с удовольствием (из-за низких цен) пользуются владельцы загородных участков. Но недостаточно пробурить скважину — необходимо правильно ее обсадить. А вот здесь уже требуется профессиональный уровень и опыт настоящих буровиков. Осторожно выбирайте подрядчика, даже если скважина планируется не очень глубокой и простой по конструкции. В противном случае дешевая скважина станет источником некачественной воды и дополнительных расходов.


Высокотехнологичный метод бурения глубоких артезианских скважин. Современные технологии бурения скважин чаще всего используют именно роторный метод. Мощная буровая установка на большом автомобильном шасси, используя шарошечное долото, позволяет бурить скважину на глубину более 200 м практически в любой твердой породе. Помехой не станут ни валуны, ни даже породы повышенной твердости типа окремненного известняка — технология бурения артезианской скважины в этом случае использует специальное алмазное долото. В основном метод используется для создания качественных артезианских скважин с хорошим дебитом. Важным дополнительным достоинством роторного бурения является возможность разместить скважину в любом удобном для Вас месте на участке.




буровая установка УРБ2 А2 на шасси УРАЛ


Процесс бурения происходит с промывкой буровым раствором. Раствор выполняет сразу несколько функций: охлаждает и смазывает буровой инструмент, укрепляет стенки скважины, выносит на поверхность шлам. Шлам — это смесь бурового раствора с частицами разрушенной породы. Шлам оседает в приямке, выкопанном рядом с местом бурения, а раствор возвращается в скважину.


Различают два вида промывки при бурении. Прямая промывка — буровой раствор подается через буровые штанги и выходит по стволу скважины, вынося шлам на поверхность. Обратная промывка — попав в скважину, раствор забирается из нижней точки и выводится на поверхность через буровую колонну. Обратная промывка дает возможность более качественно вскрыть водоносный горизонт, но обходится дороже, так как требует сложного оборудования.


Вряд ли получиться выбрать метод бурения, исходя из каких-то личных или финансовых предпочтений. Определяющим будет тип водоносного горизонта, на который собрались бурить, характеристики породы и конструкция скважины. Шнек пригоден только при бурении в мягких породах без камней и валунов на относительно небольшую глубину, поэтому в основном используется при создании песчаных скважин. Роторное бурение универсально, твердые породы на большую глубину шарошечное долото проходит без проблем — это единственный вариант при бурении на известняк. Ударно-канатное бурение требует слишком много времени, низкотехнологично и практически не используется.



Внимательно отнеситесь к выбору буровой компании. При некачественном бурении и обсадке (особенно глубокой артезианской) качество воды ухудшится, срок жизни скважины сократится, а затраты на ремонт и восстановление работоспособности источника водоснабжения будут несоразмерно высоки.


В определенных ситуациях домовладелец задумывается о возможности сделать водяную скважину самостоятельно, надеясь выиграть сразу по нескольким пунктам — бурение, обсадка и т.д. В основном, конечно, все стремятся сэкономить. Главное, чтобы «экономия» не коснулась качества воды и времени, потраченного на самодеятельную скважину. Вполне возможно, что у Вас получится сделать так называемый абиссинский колодец, или скважину-иглу. В этом случае узкая обсадная труба с острой насадкой просто забивается неглубоко в землю до ближайшего водоносного горизонта (не глубже 8 м). Бурение малогабаритной шнековой установкой позволяет сделать более глубокую скважину большего диаметра. Такие установки снабжены либо электрическим, либо бензиновым двигателем.


Но пробурить — это полдела, требуется качественно обсадить скважину. Часто бывает, что пройдя часть ствола, домовладелец вынужден обращаться к специалистам, чтобы те закончили бурение или до конца обсадили скважину. Конечно, в такой ситуации заказчик приобретает некоторый опыт буровика, но опыт этот недостаточен для самостоятельной работы и стоит большого количества потраченных денег, времени и сил. Если стоит задача сделать в коттедже качественное круглогодичное водоснабжение на основе скважины, рекомендуем сразу обращаться в профессиональную буровую компанию.

основные методы, особенности, технологические этапы

Бурение артезианских скважин выполняется вращательным способом, когда породоразрушающий инструмент (шарошечное долото) вращается за счет крутящего момента, передаваемого буровыми штангами от вращателя. В последнее время для этих целей наибольшее распространение получили буровые станки УРБ 2А-2 на базе ЗИЛ 131, УРАЛа или КАМАЗа. В качестве двигателя буровой установки может использоваться как маршевый двигатель, так и отдельный палубный двигатель.


Бурение на воду с промывкой


При бурении промывкой разрушаемая порода гидравлическим способом вымывается на поверхность. Поскольку буровые штанги представляют собой толстостенные трубы с резьбовым муфтовым соединением, через них с помощью насоса на забой подается специальная жидкость. Пройдя по штангам вниз до долота, эта жидкость вымывает разрушаемую породу и поднимает ее по стволу на поверхность, где она самотеком переливается в отстойник. Из отстойника по гибкому шлангу раствор вновь насосом подается внутрь штанг и по штангам на забой, тем самым, осуществляя круговорот.


Когда проходят неустойчивые породы в качестве промывочной жидкости применяют глинистый раствор, поэтому насос, который прокачивает этот раствор получил название грязевого насоса. А этот метод получил название бурения с промывкой. Если геологический разрез начинается с глинистых слоев, раствор получается естественным образом. При невозможности образования глинистого раствора естественным путем его замешивают из специальной глины (бентонитовой), возможно добавление небольшого количества цемента. При прохождении твердых пород, таких как известняк, в качестве промывочного раствора, как правило, используется вода.



Глинистый раствор выполняет еще одну важную функцию – за счет гидростатического давления удерживает стенки ствола скважины от обрушения. Глинистый раствор хорошо удерживает стенки при прохождении глинистых и песчаных слоев.


По виду вымываемого глинистого раствора буровой мастер видит, какие породы разрушает долото и фиксирует это в журнале.


Когда инструмент доходит до известняка, ствол обсаживается трубами и промывается. Известняк является естественным хранилищем воды, которая заполняет поры, каверны и трещины, образуя «бесконечную» систему «сообщающихся сосудов». Далее происходит бурение известняка долотом меньшего диаметра с использованием в качестве промывочной жидкости чистой воды (при небольших глубинах используют глинистый раствор). Если встречаются прослойки глины или песчаные линзы, буровой мастер фиксирует это в журнале, в будущем эти участки ствола обязательно перекрываются обсадной трубой меньшего диаметра.


Встречаются и сплошные известняки, иногда окремненные, в которых по понятным причинам нет трещин и, как следствие, воды. Но рано или поздно инструмент доходит до нужных пластов.


Когда начинается поглощение промывочной жидкости, ее количество пополняется с помощью привозной технологической воды, которую привозит автоцистерна, получившая название водовозки. По степени поглощения промывочной жидкости буровой мастер определяет ожидаемый дебит, то есть ее производительность. Когда это поглощение достигает необходимых значений, буровой мастер отбивает статический уровень и при необходимости обсаживает ствол известняка обсадной трубой меньшего диаметра.


Бурение скважин на воду в Московской области состоит из 3 операций, которые выполняются последовательно или параллельно:


  1. Разрушение породы.
  2. Транспортировка разрушенной породы с забоя на поверхность.
  3. Крепление стенок обсадной колонной.

Разрушение породы производится долотом, транспортировка буровым раствором с помощью насоса, а стенки скважины крепятся обсадными трубами.


Завершающая стадия


Завершается процесс бурения прокачкой. В скважину на буровых штангах опускается скважинный насос, которым она прокачивается. Процесс занимает от нескольких часов до суток. Но объективное представление о качестве воды можно сделать лишь через пару недель эксплуатации скважины.



При прокачке замеряют еще одну очень важную характеристику – динамический уровень. Затем рассчитывается удельный дебит скважины.


Скважина готова к эксплуатации. То есть не совсем так. Теперь ее необходимо обустроить кессоном и смонтировать скважинный насос.



Звонок нашим инженерам поможет Вам принять решение: (495) 649-8593


Узнайте цены на бурение и установку водоподьемного оборудования (кессон, адаптер, насос, гидробак).

Какие работы включает обустройство скважины, которое необходимо для создания полноценной системы водообеспечения коттеджа круглый год.

Какие данные содержит паспорт скважины, и почему его наличие необходимо при подборе водоподьемного оборудования.

Технология бурения скважин на воду

Главная » Технологии » Технология бурения

Артезианская скважина – сложное гидрогеологическое сооружение. При бурении таких скважин существует немало особенностей и их не соблюдение может привести к выходу из строя скважины, значительному уменьшению срока службы и к ухудшению качества воды. Поэтому так важно соблюдать всю технологию бурения скважин на воду. Наша компания гарантирует Вам, что скважины, пробуренные нами, будут служить Вам долго и надежно, потому что наши бурильщики соблюдают всю технологию бурения.

Прежде всего давайте разберем терминологию, — что такое технология бурения –это свод определенных правил и нормативных документов, позволяющих произвести безаварийное бурение скважины под различное целевое назначение и утвержденные регламентом проведения работ.

Регламент проведения работ по бурению скважин на воду

Прежде всего хочется отметить что регламент проведения буровых работ – это основополагающий документ, в котором описывается весь технологический процесс бурения скважины, подлежащий строгому исполнению и любое отступление от регламента должно утверждаться руководством буровой и проектной организациями. Не маловажная роль в регламенте проведения работ отводиться контролю за действиями буровой бригады, путем передачи информации в строго обозначенное время (сводки).

Геологическая разведка и что это такое?

Она выполняется на предмет соответствия кадастровым данным, если таковые есть и служит основополагающим материалом для проектирования будущей скважины.При выполнении геологразведки,выполняется комплекс геофизических исследований,при которых описываются интервалы водопроявления,статические и динамические уровни водонасыщенных горизонтов.Отбираются пробы воды для химического и бактериологического анализа, все эти данные помогут проектировщику правильно подобрать конструкцию скважины на необходимый нам водонасыщенный горизонт.И давайте не будем забывать,что бурение без геологической разведки — является грубейшим нарушением технологии бурения скважин на воду.

Проектирование скважины.

После получения исходных данных по геологии и необходимому дебиту скважины делается проект на скважину. Одним из наиболее важным и основным этапом является проектирование конструкции скважины, конструкция скважины и количество колонн зависит от следующих факторов:
— геологического разреза местности. Перед проектированием скважины, обязательно досконально изучаются данные по геологоразведке, после этого проектировщиком делается анализ и в проект закладывается необходимое количество колонн.
— целевого назначения скважины (вода, нефть, газ, геотермальное отопление или другое). Если скважина бурится для отбора воды, то необходимо знать суточное потребление воды на объекте. Эта информация позволит правильно спроектировать конечный диаметр эксплуатационной колонны.
После полученной информации определяется способ бурения и выбор бурового станка:
— способ бурения определяется группой и характеристикой пород

На примере одного населенного пункта постораемся показать как это выглядит:

1. Исходные данные по геологии:

0-2м. суглинки бурые.
2-20м.пески мелкозернистые и валунные отложения.
20-50м.глина коричневая.
50-55м.известняк крепкий.
55-62м.известняк трещиноватый(водонасыщенный)

2. дебит скважины нужен 3куб.час.

Согласно исходных данных конструкция скважины будет следующей:
D159мм.0-20м.(кондуктор)
D125мм.0-52м.(эксплуатационная)
D93мм.  52-62м.(открытый ствол).

Обращаем ваше внимание на то, что все четвертичные отложения, которые идут до известняка должны отсекаться кондукторами, во избежании подтока верхних вод и загрязнения известнякового пласта. Поэтому каждая скважина индивидуальна и прежде чем определять конструкцию скважины, изучается гидрогеология данного населенного пункта и только после этого, можно сказать какой конструкции скважина у вас будет.

Приготовление бурового раствора.

Особое внимание в регламенте проведения буровых работ отводится приготовлению раствора для бурения скважины. При расчете параметров бурового раствора во внимание принимают мощность неустойчивых грунтов, например песко-гравийные отложения. Поэтому при прохождении таких грунтов нужно уделить внимание : плотности раствора, удельному весу и его водоотдаче.

Вскрытие водоносного горизонта.

Данный этап в технологическом процессе бурения скважины необходимо выполнить с большой ответственностью. Прежде всего необходимо перевести скважину на воду, после того как вы произвели обсадку колонны (технической или эксплуатационной) на кровлю известняка, необходимо буровой раствор находящийся внутри колонны выдавить из скважины потоком чистой воды, подаваемой через бурильные трубы на забой (дно скважины) – это делается во избежании загрязнения горизонта и прекращения срока службы скважин находящихся вблизи места бурения. Далее на чистой воде происходит вскрытие известнякового горизонта.

Испытание скважины.

Одним из заключительных этапов в регламенте проведения работ, является прокачка скважины. Она может осуществляться как эрлифтом (компрессорная прокачка), так и центробежными насосами. В результате данных испытаний определяется дебит скважины, статический и динамический уровни. Все полученные данные заносятся в паспорт скважины.

Подводя итог – технология бурения скважин на воду, должна сопровождаться регламентом проведения буровых работ. Так же давайте не будем забывать, что регламент проведения буровых работ описывается индивидуально под скважину, так как его определяет – технология бурения скважин на воду.

Так же рекомендуем Вам, прочитать статью «оптимальная конструкция скважины«

Проверить правильность пробуренной скважины и соблюдение технологии бурения скважины можно заказав геофизический каротаж.

Получить более подробную информацию о скважинах и возможных конструкциях Вы можете по телефонам:

8 (495) 729-00-25,
8 (906) 708-76-75

Технология бурения скважин на воду

Технология бурения на воду. Виды скважин

Технологии бурения скважин на воду классифицируются по способу разрушения грунтовых пород и методу их извлечения на поверхность. В свою очередь, выбранный способ определяет набор оборудования и техники для устройства индивидуальной скважины на воду на дачном участке. Таким образом, именно технология бурения на воду с ее конкретными особенностями определяет конечную стоимость создания и обустройства источника воды на даче или участке загородного коттеджа. В некоторых районах Подмосковья и Твери, где водоносные слои представлены известковыми и песчаными горизонтами, наша компания осуществляет разработку артезианских (известковых) и фильтровых (песчаных) точек водоснабжения.

Технологии бурения на воду: классификация, особенности

Базовые принципы бурения скважин на воду сводятся к выбору технологии разрушения пород. Бурение производят шнековым, роторным или ударно-канатным способом. Выбор зависит от типа местности, ее геологических особенностей, глубины залегания подземных водоносных слоев, конкретного типа грунта на участке.

Виды скважин на воду: различия, преимущества

Геологические особенности местности определяют тип скважины на воду, которая может быть:

Кроме того, некоторые жители сельских районов все еще предпочитают добрый старый колодец.

Артезианская скважина (известковая)

Глубина артезианской скважины под воду зависит от уровня залегания подземных вод. Например, водоносные известняки в Московской области находятся от 20 до 100 и более метров от поверхности земли. Поэтому глубина бурения на воду в северных районах Подмосковья обычно составляет 20-25 метров, а на юге может достигать 200 метров. Для известкового источника характерно большое количество воды (до 10-15 куб.м/час) и долгий срок эксплуатации. Стоимость разработки артезианской скважины больше, чем фильтровой, поэтому иногда соседи по даче кооперируются и оборудуют один источник на несколько домов. Выбирая, где расположить скважину на участке, следует учитывать, что для ее разработки потребуется участие тяжелой техники, которой нужно обеспечить беспрепятственный подъезд. Наша компания использует оборудование на базе ЗИЛ-131. Чтобы буровая машина могла подъехать к объекту, потребуется дорожка шириной не менее 3 метров и площадка 4×6 метров для работы.

Фильтровая скважина (на песок)

Особенности бурения на воду в местности, где подземные воды проходят в песчаных слоях, позволяют заглубляться в грунт не более чем на 30 метров. Технология бурения шнековым способом состоит в одновременном разрушении породы и извлечении ее на поверхность. Дебет фильтрового источника намного меньше артезианского, но его вполне хватает для полива на даче и бытовых нужд.

«Правильная» скважина на воду, обустроенная под ключ, служит от 5 до 15 лет, а по окончании срока эксплуатации требует проведения специального вида работ по ее восстановлению. Сезонная эксплуатация, когда водой пользуются в течение 3-4 месяцев, а остальное время источник «простаивает», негативно сказывается на длительности его жизни. «Сезонная» скважина быстро заиливается, ее дебет уменьшается, и лет через семь она и вовсе выходит из строя. После того, как насос перестает качать воду из песчаного источника, обсадные трубы промывают под давлением с помощью специального оборудования. Если этот метод «реанимации» не помогает, бурят новую точку. Поэтому, выбирая вид скважины на воду, лучше вложить средства в долгосрочный, артезианский, проект.

Абиссинский колодец

Абиссинский колодец является самым доступным вариантом водоснабжения. Если в случае разработки фильтрового или известкового источника порядок бурения на воду сводится к выбору места его обустройства, использованию тяжелой или малогабаритной техники и последующему запуску скважины, то для создания абиссинского колодца грунт просто «прокалывается» трубой с острым наконечником. Его глубина составляет не более 8-12 метров, но к преимуществам относится полная защищенность от грязи, спор, пыли, дождя.

Звоните прямо сейчас!

(4822) 45-21-31

Заказать звонок

Мы свяжемся с вами
в течение 10 минут

Технология бурения скважин на воду

Бурение скважин на воду один из самых распространённых способов добычи подземных вод. Установка скважины позволяет получать  чистую, питьевую воду в любое время года.

Как происходит бурение? В процессе бурения скважин на воду буровой инструмент проходит сквозь слои грунта и извлекает на дневную поверхность шлам (разрушенную горную породу). Для получения из скважины воды необходимо пробурить скважину, а также извлечь из отвала выработку, которой завершается слой грунта, насыщенного водой. Технология бурения состоит в завинчивании в грунт бурового инструмента, либо в разбивании породы и последующем извлечении ее из завала.

 

 

Бурение скважин на воду, сооружаемых на песке

 

При бурении фильтровых скважин на воду устанавливают одну колонну труб, соединенных специальным образом между собой при помощи резьбы либо сварки. Бурение скважины на песке является менее трудоемким и менее затратным процессом, чем бурение на известняке. На конце трубы, используемой для водозабора, устанавливают сетчатый фильтр. При бурении используют трубы различного диаметра в соответствии с необходимой водоотдачей. Обустройство такой водозаборной скважины не требует лицензирования и осуществляется за один-два дня.

 

 

 

Конструкция артезианской скважины

 

Процесс бурения глубоких скважин сопровождается рядом особенностей, которые следует учитывать. Во избежание различных нежелательных последствий, таких как ухудшение качества воды, сокращение эксплуатационного срока, обрушения, должна соблюдаться технология бурения таких скважин. В этой конструкции водозаборной скважины первую обсадную колонну опускают в известняк, после чего зарезают для герметизации для исключения попадания верхних вод. В обсадной колонне осуществляют бурение, вскрывая пласт известняка – данный интервал обустраивают перфорированной обсадной колонной, чтобы избежать обрушения пласта. В перфорированной трубе бурят фильтровой отстойник (карман под шлам). В конструкции скважины «на известняке» также может быть использована дополнительная обсадная колонна либо кондуктор.

 

Чтобы увеличить эффективность водоносного горизонта при снижении водоотдачи, несоответствии воды по бактериологическому либо химическому составу, авариях в забое, либо нарушениях, устранить которые невозможно, может быть использована зарезка либо сооружен второй ствол скважины.

 

Технология бурения дает возможность скорректировать конструкцию скважины в соответствии с фактическим разрезом, а затем убедиться в исправности ее при помощи геофизических каротажных исследований.

 

Типы водозаборных скважин

Технология бурения скважин на воду

Скважина на воду представляет собой сложное гидротехническое сооружение и от того на сколько правильно выбрана конструкция и соблюдена технология бурения скважины на воду, зависит срок ее службы, производительность, качество воды и т.д.

Выбор места бурения скважины на воду

Перед началом работ по бурению необходимо правильно выбрать точку расположения скважины, определить место установки буровой и вспомогательных машин, определить рабочую зону, зону для слива технической воды, складирования оборудования для бурения и т.д.

В общем случае по технологии бурения артезианских скважин требуется ровная площадка размером 4х12 метров, для проезда бурового станка и водовозки въездные ворота не менее 3 м (при возможности заезда в них по прямой), отсутствие проводов в радиусе 2 метров над точкой бурения.

Расположение артезианской скважины выбирается в основном из экономических соображений – чем ближе к месту ввода, тем меньше траншей копать и короче трубы закладывать. Но при этом необходимо учесть, что по технологии бурения скважину на воду можно располагать не ближе 3 метров от дома, необходимо оставить возможность постоянного подъезда буровой техники и ни в коем случае не строить над ней никаких строений.

Технология бурения скважин

Существует множество различных технологий бурения скважин, но при этом неизменно выполняются три основные операции: разрушение породы, подъем ее на поверхность, закрепление стенок пробуренной скважины.

Разрушение породы

Производится, как правило, механическим способом с помощью различных породоразрушающих приспособлений. Существует также множество других методов: термический, электрический, взрывной и др., но эти технологии при бурении скважин на воду используются реже.

Подъем породы на поверхность

Существует несколько способов:

  • Гидравлический (подъем на поверхность осуществляется с помощью промывочной жидкости (вода, глинистый раствор),
  • Механический (с использованием специального оборудования для бурения (шнек, желонка, различные специальные буры и др.)),
  • Пневматический (с использованием сжатого воздуха),
  • Комбинированный.

Закрепление стенок

Для большинства видов скважин на воду их стенки крепятся металлическими обсадными трубами. Чаще всего используются трубы из черной стали, электросварные или цельнотянутые, на резьбовых или сварных соединениях . Использование оцинкованных труб не рекомендуется для питьевых нужд, а нержавеющая сталь слишком дорога и нерентабельна.

В настоящее время в большинстве артезианских скважин на воду используется современная технология двойной обсадки. Основную стальную колонну дополняет пластиковый вкладыш из трубы ПНД или ПВХ. При такой конструкции срок службы, по сравнению с однотрубной, значительно возрастает, повышаются потребительские и эксплуатационные свойства.

Технология бурения артезианских скважин на воду

В нашей стране при устройстве артезианских скважин на воду используют в основном станки для бурения скважин УРБ 2А-2 на базе ЗИЛа, а также КАМАЗа или УРАЛа. Технология при использовании этой установки подразумевает разрушение породы механическим способом, в качестве породоразрушающего инструмента используется шарошечное долото, которое крепиться на конце буровых штанг и приводится во вращение с помощью двигателя машины для бурения скважины.

Подъем разрушенной породы на поверхность осуществляется гидравлическим способом, а в качестве промывочной жидкости используется вода или специальный глинистый раствор. Такая технология бурения скважин на воду имеет название «бурение с промывкой». Суть его состоит в том, что промывочная жидкость подается по штангам на забой с помощью насоса, а затем поднимается обратно вверх уже вместе с разрушенной породой. На поверхности она выливается в специальный отстойник, из которого насосом закачивается обратно. Контролируя какие породы выходят на поверхность вместе с промывочной жидкостью, буровики составляют геологический разрез скважины.

При прохождении не твердых слоев (песок, суглинок, глина) в качестве промывочной жидкости используется глинистый раствор. Если разрез начинается с глинистых слоев, то такой раствор получается естественным образом с добавлением воды, иначе его делают при помощи специально привезенной бентонитовой глины. Кроме подъема разрушаемой породы на поверхность, глинистый раствор закрепляет стенки скважины и не дает им обрушиться.

При прохождении твердых слоев, на пример известняков, в качестве промывочной жидкости используется простая вода. Она имеет и второе назначение, когда буровиками проходится водоносный известняк начинается поглощение воды, т.е. вода начинает уходить в скважину. По степени поглощения определяется дебит, когда он достигает необходимых значений, бурение прекращается.

Технология бурения артезианских скважин на воду предполагает последовательную обсадку трубами. После того, как скважина была пробурена до известняка, в нее монтируют стальные обсадные трубы. Дальше разрабатывают известняк долотом меньшего диаметра и при необходимости обсаживают пластиковыми трубами. Безусловно, это самый простой вариант устройства артезианской скважины, когда нет геологических осложнений, больших глубин, низкого дебита и т.д. На самом деле существует множество различных конструкций артезианских скважин.

Завершающим этапом работ следует прокачка скважины до чистой (прозрачной) воды. Так же во время прокачки замеряют необходимые параметры (дебит, динамический и статический уровни) для подбора и монтажа водоподъемного оборудования.

Технологии в бурении глубоких и сверхглубоких скважин: текущее состояние, проблемы и будущие тенденции в период 13-й пятилетки (2016–2020 гг.)

В период 12-й пятилетки (2011–2015 гг.) CNPC независимо разработала серия нового бурового оборудования, инструмента и химических материалов для глубоких и сверхглубоких скважин, в том числе шесть комплектов ключевого бурового оборудования: станки для скважин глубиной до 8000 м, четырехшарнирно-стендовые станки, устройства автоматического перемещения труб для буровых установок скважины глубиной 5000/7000 м, системы и оборудование для бурения с регулируемым давлением, газо-топливные альтернативные двигатели внутреннего сгорания и системы бурения на воздухе / газе / депрессии; семь наборов ключевых буровых инструментов: автоматические инструменты для вертикального бурения скважин, скважинные турбинные инструменты, высокопроизводительные долота PDC, гибридные долота, устройства пульсации струи долота, система контроля отсутствия неожиданности при бурении и устройства для спуска обсадной колонны для верхнего привода; и пять видов буровых растворов и цементных растворов: высокотемпературные и высокоплотные буровые растворы на водной основе, буровые растворы на масляной основе, высокотемпературный цементный раствор с большим перепадом температур и система вязкого цементного раствора.Эти новые технологии разработки сыграли важную роль в поддержке китайского бизнеса по разведке и разработке нефти и газа. В течение следующего периода 13-й пятилетки (2016–2020 гг.) По-прежнему существует множество проблем при бурении глубоких и сверхглубоких скважин, таких как высокие температуры, высокое давление, узкое окно давления, целостность ствола скважины и т. Д. а также огромное давление на снижение затрат и повышение эффективности. Таким образом, будущая тенденция развития будет сосредоточена на разработке эффективных и мобильных буровых установок, высокопроизводительных буровых долот и вспомогательных инструментов, методов обеспечения целостности ствола скважины и широкополосной телеметрии в скважине и т. Д.В заключение, это исследование поможет улучшить возможности и уровень бурения сверхглубоких скважин и окажет поддержку услугам по разведке и разработке нефти и газа в Китае.

Поиск лучших мест для бурения скважин на воду с помощью технологий

Когда вы хотите пробурить новую водозаборную скважину, будь то для орошения, домашнего или муниципального использования, геотермального или водного полива, один из самых больших вопросов заключается в том, откуда вы знаете, где бурить.Пробурить скважину может стоить сотни или тысячи долларов, и если в итоге получится сухая скважина, это будет напрасная трата денег.

В течение последних нескольких столетий технологию поиска подземных вод называли «колдовской». Это включает использование ветки ивы, чтобы ходить взад и вперед по заданной области, пока подземные воды не заставят ветку согнуться вниз.

Он добился определенных успехов, особенно в обнаружении источников воды, которые расположены близко к поверхности и не затруднены толстыми слоями сланца или глины.Его успех в обнаружении более глубоких или более скрытых водных образований имеет больше ограничений.

Но, как и в других областях сельского хозяйства и геологии, технологии достигли прогресса. Познакомьтесь с Кевином Ригсби, менеджером по геолого-геофизическим исследованиям в Hydro Resources, компании, расположенной в Шугарленде, штат Техас, с офисами в девяти местах — все они предназначены для помощи фермерам, сельским предприятиям и правительствам в поиске лучшего места для получения необходимой им воды.

Его местоположение в Канзасе — Гарден-Сити.В Оклахоме у него есть офис в Талсе. Офисы в Техасе находятся в Шугарленде, Дриппинг-Спрингс, Далхарте, Херефорде и Санрей. Есть также офисы в Форт-Луптоне, штат Колорадо, и в Рино и Виннемукке, штат Невада

.

Ригсби работает в офисе в Талсе, Оклахома.

«Более 20 лет я работал в нефтегазовой отрасли, используя сейсмические и электромагнитные технологии, чтобы помочь найти лучшие участки для бурения нефтяных скважин», — говорит Ригсби. «Но почти каждый раз, когда я создавал тестовую площадку, у меня был фермер — землевладелец или сосед — спрашивал меня, можно ли использовать такую ​​технологию для обнаружения воды.”

Ригсби говорит, что его заинтриговал этот вопрос, в основном потому, что он подозревал, что ответ был «да», но также потому, что у него было ощущение, что дни экономики, основанной на ископаемом топливе, были ограничены и что «вода — новое золото».

Итак, он оставил нефтегазовый мир и разработал геофизический способ поиска воды под поверхностью земли. Hydro Resources использует электромагнитные токи для создания сигналов и измерения возвратных сигналов, которые отображают гидрологические особенности под поверхностью и определяют места, где можно найти бурение скважины с хорошим качеством и хорошим запасом воды.

Геотехники размещают на поверхности несколько датчиков для измерения обратных сигналов и вставляют зонды из нержавеющей стали для приема низкочастотных сигналов с земли.

«Когда низкочастотные сигналы проходят через землю и скальные образования, возвращаемый сигнал несет новую информацию, помогая нам находить участки песка, гравия или пористого известняка», — говорит Ригсби. Он добавляет, что данные, собранные на успешных скважинах, помогают определить типы обратных сигнатур, которые указывают, где бурение будет продуктивным.

По его словам, компания

Hydro Resources ведет разведку скважин на воду с использованием этой технологии с 2004 года и имеет около 85% успешных попыток найти приемлемые скважины на национальном и международном уровнях. «У нас очень редко бывает сухая яма; иногда мы получаем меньше объема, чем предполагалось, иногда лучше », — добавляет Ригби.

В случаях, когда пласты грунтовых вод находятся на глубине 300 футов или более, Hydro Resources имеет технологию, которая позволяет использовать естественное электромагнитное поле земли для измерения «удельного сопротивления» или сопротивления току и использовать это для определения где есть бассейны с водой.

В западных Канзасе и Оклахоме некоторые подземные водоносные горизонты часто являются солоноватыми или слишком солеными, чтобы их можно было использовать для орошения. Но Ригсби говорит, что технология Hydro Resources может отличить соленую воду от пресной.

«Соленая вода обладает высокой проводимостью», — говорит он. «Его удельное сопротивление составляет около 6 Ом по сравнению с 16 или 18 или выше для пресной воды. На наших изображениях значения удельного сопротивления пластов обозначены цветом. Желтая или зеленая зона — хорошая цель; оранжевая или красная зона почти наверняка будет соленой водой или глиной / сланцем.”

Он говорит, что та же технология может помочь менеджерам водных ресурсов отслеживать подземные «шлейфы» соленой воды, которые либо возникают естественным путем, либо чаще возникают в результате утилизации или протекающих обсадных труб нефтяных скважин.

«Измеряя удельное сопротивление, можно отличить соленую воду от пресной», — говорит он. «Это действительно единственная технология, которая делает это».

Технологии Буровых Установок

Инструмент для наклонно-направленного бурения на отклонение

Существует несколько систем для определения и устранения отклонения, и некоторые из них были значительно усовершенствованы в последнее время, особенно после того, как стало более распространено проведение горизонтальных скважин с большим отходом от вертикали или скважин особой формы.

Буровая промышленность перешла от использования клина-отклонителя и струйной обработки к систематическому использованию забойных двигателей, управляемых систем и геонавигации.

В общем, траектория ствола скважины определяется типом используемой компоновки низа бурильной колонны и весом долота.

Компоновка низа бурильной колонны состоит из нескольких компонентов:

  • Труба бурильная утяжеленная, утяжеленные бурильные трубы, стабилизаторы, переводники

Типичная компоновка низа бурильной колонны с вращением с поверхности (КНБК) состоит из стабилизаторов, утяжеленных бурильных труб и оборудования для измерения во время бурения (MWD).

Размещение и размер стабилизаторов регулируют наклон (угол отклонения от вертикали).

Сборки могут быть спроектированы так, чтобы иметь угол наклона, удерживать его устойчиво или угол падения.

Управляемая система бурения и геонавигация

Роторные агрегаты не позволяют точно контролировать азимут ствола скважины (компасный пеленг ствола скважины по отношению к магнитному северу).

Это управление обычно достигается с помощью забойного двигателя с изогнутым корпусом, который позволяет вращать только долото.

Забойные двигатели — это гидравлические машины на конце колонны, навинченные непосредственно на долото, и весь поток бурового раствора проходит через них, а часть давления бурового раствора преобразуется во вращательное движение и крутящий момент.

Таким образом, вращение, необходимое для работы долота, обеспечивается забойным двигателем, в то время как вся бурильная колонна может оставаться неподвижной или может вращаться, если необходимо, с помощью поворотного стола или верхнего привода.

Использование таких двигателей необходимо как при наклонно-направленном бурении, так и при применении современных методов управления вертикальной траекторией скважин.

Забойные двигатели, являющиеся неотъемлемой частью КНБК, представляют собой машины с осевым потоком трубчатой ​​формы и по размеру аналогичны утяжеленной бурильной трубе.

Эти двигатели не являются частью стандартного оборудования буровой установки, а арендуются у сервисных компаний, которые также предоставляют персонал, специализирующийся на их использовании и обеспечивающий их техническое обслуживание.

Двигатели прямого вытеснения — это вращающиеся объемные машины замкнутого типа, а их внутренняя архитектура на самом деле представляет собой насосы Мойно, предназначенные для работы в противоположном направлении, в результате чего вал двигателя приводится во вращение, проталкивая раствор через него под давлением.

Буровой раствор, который проходит мимо статора и ротора, заполняет эти полости и заставляет ротор непрерывно вращаться, вызывая вращение только долота.

Обзор технологий вертикального и наклонно-направленного бурения для разведки и разработки глубоких залежей нефти

Разработка методов направленного бурения

Первое поколение направленных методов

Первое поколение направленных методов является результатом начального наклонно-направленного бурения.Существует два вида метода направленности (Inglis 1987; Short 1993; Chen 2011; Han 2011):

  1. 1.

    Пассивно-направленное бурение: траектория скважины определяется законом естественного отклонения пластов, изгиб бурильной колонны и буровое долото также могут влиять на траекторию скважины, но траекторию скважины нельзя точно контролировать.

  2. 2.

    Активное наклонно-направленное бурение: для активного управления траекторией скважины по предполагаемой траектории используются специальные устройства, инструменты и технологические мероприятия, суть активного наклонно-направленного бурения — изменение отклонения оси инструмента от оси скважины искусственным способом. В течение этого периода для бурения наклонно-направленных скважин использовались обычная компоновка низа бурильной колонны (КНБК) и клин-отклонитель.

    1. (я)

      Обычная КНБК: обычная КНБК с мультистабилизатором может использоваться для управления углом отклонения ствола скважины на основе принципа рычага или маятникового эффекта, это начальный и активный метод направленности.В соответствии с функцией КНБК может быть классифицирована как КНБК с наклоном, понижением угла, удержанием угла или жесткой КНБК. Этот метод полезен для очистки ствола скважины, уменьшения сопротивления бурильной колонны, уменьшения угла излома и экономии затрат на бурение. Но нет возможности контролировать азимут скважины.

    2. (ii)

      Отклоняющий клин / отклоняющий клин: первым инструментом для отклонения скважины должен быть дефлектор, также называемый клином-отклонителем, это специализированный инструмент, который используется для отклонения бурового долота от оси скважины и направления в требуемом направлении.Таким образом, перед спуском в скважину выполняется направленный процесс. Для управления азимутом можно использовать клин-отклонитель, он преодолевает недостаток традиционной КНБК. Однако у этого метода много недостатков: многократные и повторяющиеся отключения, отказ от отклонения, потеря времени и средств, сложные операции и низкая точность управления. При изменении азимута скважины грань инструмента фиксируется, что также называется режимом фиксированной грани инструмента. Чтобы продолжить изменение азимута скважины, торцовая поверхность инструмента должна регулироваться прерывисто, это означает, что новое отверстие и исходное отверстие существуют в сужающейся плоскости, поэтому это можно назвать режимом настройки азимута на сужающейся плоскости.В некоторых специализированных ситуациях этот метод по-прежнему работает эффективно, например, зарезка бокового ствола, зарезка бокового ствола — это процедура отклонения исходного ствола в точке над дном и бурение нового ствола в другом направлении, это может быть выполнено как в открытом, так и в обсаженном стволе. Обычно используется для обхода рыбы или бурения к другому объекту, расположенному вдали от исходного ствола скважины. Кроме того, при бурении сверхглубокой скважины с высокой температурой, которая приводит к отказу ВЗД и не работает, этот метод может быть эффективным методом замены.

Второе поколение направленных методов

Второе поколение направленных методов является результатом изобретения и развития инструментов. В этот период типичной особенностью является изобретение забойного двигателя и метода контроля.

  1. 1.

    Забойный двигатель обычно включает поршневой двигатель (PDM), турбобур и электродрель (Short 1993; Chen 2011; Han 2011).ВДП и турбобур используют давление и объем циркулирующего бурового раствора для вращения долота, но электродрель использует электрическую энергию для вращения долота. В сочетании с другими инструментами (гибочная штанга, гибочное соединение, эксцентриковое соединение или аналогичные инструменты) это обеспечивает эффективный метод изменения направления ствола скважины.

  2. 2.

    Метод мониторинга включает инклинометр с плавиковой кислотой и фотографический инклинометр (Short 1993; Chen 2011).Для достижения цели регулировки азимута ключом является фиксация всей бурильной колонны и позволяет забойному двигателю вращать долото, это означает, что поверхность инструмента фиксируется во время процесса регулировки, ее можно назвать фиксированной буровой головкой. струнный режим. Лицевую часть инструмента можно регулировать непрерывно, это означает, что новое отверстие и исходное отверстие существуют в плоскости сужения, поэтому этот режим также можно назвать режимом настройки азимута в плоскости сужения. Однако по сравнению с первым поколением траектория становится более плавной и точной.Между тем, инструменты для бурения с ВЗД и турбо-бурения также могут использоваться как для скользящего, так и для вращательного бурения, вращательное бурение с ВЗД также называется композитным бурением, оно широко используется для повышения скорости проходки (ROP) как в направленном, так и в вертикальном колодцы.

Кроме того, в этот период появляется еще один вид направленного метода, который называется струйным или подталкиванием. Это процедура отклонения ствола скважины без использования обычных направляющих узлов.Он наиболее эффективен в более мягких породах и для создания углов при низкой скорости наращивания. Это умеренно эффективный метод наклонно-направленного бурения при благоприятных условиях, но не имеет широкого применения. Максимальное нарастание угла составляет около 0,5–1,5 ° / 100 футов в скважинах с малыми углами сноса. Это дает длинный, гладкий, изогнутый участок с полунормальным сверлением. Процедура используется для постепенного отделения группы лунок друг от друга. Он также используется для перемещения точки зарезки в направлении цели и уменьшения угла, необходимого при более позднем наклонно-направленном бурении.

Третье поколение направленных методов

Третье поколение направленных методов является результатом передовых методов или инструментов мониторинга. В течение этого периода типичной особенностью является появление измерений во время бурения (MWD), которые улучшают измеряемую и контролируемую точность, направленные операции могут выполняться во время бурения (Chen 2011; Han 2011). Кроме того, из-за того, что изначально инструмент ВЗД был прямым, для повышения эффективности направленного бурения инструменты ВЗМ были разработаны с изгибающимся корпусом, например, прямой ВЗД, ВЗД с одним изгибом, ВЗД с двойным изгибом и т. Д.Одной из популярных разновидностей двигателя является PDM с одним изгибом, изгиб которого расположен около нижнего конца. Этот метод относится к режиму фиксированной грани инструмента, грань инструмента можно регулировать непрерывно, это означает, что новое отверстие и исходное отверстие существуют в конической плоскости, поэтому этот режим также можно назвать режимом регулировки азимута на поверхности цилиндра. Благодаря усовершенствованию методов и инструментов мониторинга, работа с направлением значительно упростилась. До сих пор третье поколение по-прежнему является основным методом наклонно-направленного и горизонтального бурения.

Четвертое поколение направленных методов

Четвертое поколение направленных технологий является результатом автоматизации бурения, типичной особенностью которых является изобретение роторной управляемой буровой системы (RSDS) (Chen 2011; Han 2011). Из-за того, что забой инструмента необходимо регулировать искусственно, бурильную колонну необходимо фиксировать при наклонно-направленном бурении, то есть так называемом скользящем бурении. Поскольку сопротивление бурильной колонны всегда противоположно направлению движения, что приводит к увеличению сопротивления бурильной колонны и плохо влияет на эффективность бурения, очистку ствола, качество ствола и т. Д.Таким образом, для повышения эффективности бурения и контролируемой точности, а также уменьшения сопротивления бурильной колонны, RSDS был впервые разработан компанией Schlumberger в 1999 году. RSDS позволяет нам планировать стволы скважин сложной геометрии, включая наклонно-направленные, горизонтальные и скважины с большим отходом от вертикали. Это позволяет непрерывно вращать бурильную колонну при управлении скважиной и устранять неприятный режим скольжения обычных управляемых двигателей. В настоящее время отрасль классифицирует RSDS на две группы: более распространенные системы «контроля изгиба» и менее зрелые системы «контроля отклонений» (Даунтон и др.2000).

  1. 1.

    Системы «контроля отклонения» разработаны на основе традиционной КНБК, стабилизатор переменного диаметра (DVS) используется для контроля отклонения скважины.

  2. 2.

    Системы «контроля изгиба» также являются обычным RSDS, в отрасли системы «контроля изгиба» подразделяются на два типа: наиболее распространенные системы «толкни бит», включая систему PowerDrive и систему AutoTrak, и менее зрелые « «наведи бит», включая систему Geo-Pilot и систему CDAL.

Развитие и особенности направленных методов можно резюмировать в таблице 2. Ясно обнаружено, что точность определения направления и качество ствола скважины улучшаются с развитием направленных методов.

Таблица 2 Развитие направленных методов (по Хань 2011)

Инструмент для направленного бурения

Большая часть скважинного оборудования для наклонно-направленного и горизонтального бурения обычно совпадает с вертикальным бурением, например, бурильная труба, тяжелая труба, сжатая труба, утяжеленная бурильная труба, спиральная бурильная труба с канавками, заменяющий переводник, сверло с короткой пони воротник, стабилизаторы и тд.Ясно, что без усовершенствованных инструментов для наклонно-направленного бурения может быть физически невозможно бурение данной скважины, скважина может быть пробурена в неоптимальном месте или может быть более дорогостоящим или рискованным. Развитие техники направленного действия обеспечивается передовыми инструментами направленного действия. Согласно истории развития методов направленного бурения, основные инструменты направленного действия можно резюмировать следующим образом: дефлектор, забойный двигатель, RSDS и система вертикального бурения.

Инструменты для отклонения

Инструменты для отклонения можно определить как клиновидный стальной инструмент, имеющий сужающуюся вогнутую канавку вниз с одной стороны для направления долота-отклонителя в стенку отверстия.Доступны два типа отклонителей (Inglis 1987; Short 1993; Chen 2011):

Съемный отклонитель

Съемный отклонитель может использоваться для инициирования отклонения в открытом стволе или выравнивания искривленных вертикальных скважин (Inglis 1987) . Как показано на рис. 4а, клин-отклонитель состоит из стального клина с долотом на дне для предотвращения движения после начала бурения. Коническая вогнутая часть имеет твердое покрытие для уменьшения износа. Вверху клина-отклонителя находится хомут, который используется для извлечения инструмента после того, как пробурена первая часть ствола скважины.К бурильной колонне клин-отклонитель крепится с помощью срезного пальца. Спустившись в скважину, бурильную колонну поворачивают до тех пор, пока не будет правильно позиционироваться торец клина-отклонителя. Путем приложения веса с поверхности острие долота прочно устанавливается в пласт или цементную пробку. Стопорный штифт срезан, и можно начинать сверление. Пилотное отверстие малого диаметра пробуривается на глубину примерно 15 футов ниже носка клина-отклонителя. После того, как это отверстие будет обследовано, долото и отклонитель отключаются.Затем запускают открывалку, чтобы развернуть отверстие до полного размера. После запуска отклоненного участка ствола скважины можно запустить роторную сборку здания, чтобы продолжить зарезку бокового ствола.

Рис. 4

Принципиальная схема съемного и постоянного отклонителя. a Съемный отклонитель (Inglis 1987) и b Постоянный отклонитель (короткий 1993)

Постоянный клин-отклонитель

Постоянный клин-отклонитель в основном используется в обсаженном стволе для зарезки бокового ствола вокруг рыбы или обхода обрушенной обсадной колонны (Inglis 1987).Как показано на рис. 4b, обсадная колонна с заглушкой устанавливается в точке зарезки, чтобы обеспечить основу для клина-отклонителя. На клин-отклонитель работает фреза, которая прорезает «окно» в обсадной колонне. После установки клина-отклонителя в нужном направлении и срезания стопорного штифта начинается операция фрезерования. После того, как окно вырезано, мельница вынимается из отверстия и запускается пилотное долото малого диаметра. Впоследствии пилотное отверстие расширяется до полного размера. Следующим шагом является запуск ротационной сборки здания для продолжения зарезки бокового ствола.

Забойный двигатель

Наиболее распространенный метод отклонения в настоящее время включает запуск забойного двигателя, включая ВЗД и турбобур, для приведения в движение долота без вращения всей бурильной колонны. Отклонение обеспечивается специальным переводником, размещенным над двигателем для создания боковой силы на долоте.

Инструменты PDM

Инструменты PDM чаще всего используются при наклонно-направленном и горизонтальном бурении. В 1940-х годах компания Smith создала первый PDM-инструмент. В 1950-х годах начали появляться коммерческие инструменты PDM, которые применялись в наклонно-направленном бурении.Благодаря успешному применению в наклонно-направленном и горизонтальном бурении, инструмент ВЗД находит все более широкое применение. В 1970-х годах PDM могли производить различные компании, такие как Dyna Drill, Navi Drill, Baker Drill, Christensen and Smith.

PDM состоит из нескольких компонентов, как показано на рис. 5, включая клапан сброса давления, моторную секцию, универсальный шарнир и подшипниковый узел. Клапан сброса устанавливается на верхнем конце двигателя, карданный вал установлен на нижнем конце двигателя, а подшипниковый узел подсоединяется к нижнему концу карданного шарнира.Основная функция клапана сброса давления — предотвращение вращения двигателя при спуске в скважину или выходе из нее. Секция двигателя состоит из статора и ротора: статор представляет собой формованную резиновую втулку, которая образует спиральный проход для размещения ротора, а резиновая втулка прикреплена к стальному корпусу двигателя; в то время как ротор представляет собой стальной вал, имеющий форму спирали или спирали (Inglis 1987). Когда ротор и статор собраны, геометрическая разница между ними образует серию полостей.Когда буровой раствор прокачивается через двигатель, он ищет путь между ротором и статором. При этом грязь смещает вал, заставляя его вращаться по часовой стрелке, пока грязь продолжает течь через проходы. Таким образом, функция моторной секции заключается в обеспечении мощности для вращения, а буровой раствор может быть газом или жидкостью. Универсальный шарнир соединен с ротором и вращается внутри подшипникового узла, который затем передается на долото. Подшипниковый узел, вероятно, является наиболее важным компонентом, поскольку срок службы PDM обычно определяется долговечностью подшипников.Подшипниковый узел выполняет две функции: передает осевые нагрузки на буровое долото и поддерживает центральное положение приводного вала для обеспечения плавного вращения (Inglis 1987; Short 1993).

Рис. 5

Принципиальная схема типичного инструмента PDM

В настоящее время инструменты PDM доступны в широком диапазоне диаметров около 2–11 дюймов, наиболее распространенный размер — 6–3 / 4 дюйма для ствола скважины 8–1 / 2 дюйма. Количество лепестков является очень важным аспектом двигателя, увеличение числа лепестков увеличивает скорость и снижает крутящий момент для данного размера, поэтому обычные двигатели используют один ротор и два лепестка для высокого крутящего момента.Инструменты PDM также имеют широкий диапазон скоростей около 100–800 об / мин, наиболее распространенные рабочие скорости варьируются в пределах 150–300 об / мин из-за наличия большого количества доступных сверл. Кроме того, материал статора также является критическим фактором для инструментов PDM, различные резиновые и эластомерные материалы были испытаны и испытаны. Но большинство эластомерных компонентов чувствительны к высоким температурам, и на них также влияют буровые растворы на масляной основе, которые вызывают набухание (Inglis 1987; Short 1993). Благодаря улучшенным эластомерным компаундам инструменты PDM могут выдерживать температуры примерно до 200 ° C.

Турбобур

Турбобур также может использоваться как для вертикальных, так и для наклонно-направленных скважин. В 1873 году в Чикаго был запатентован одноступенчатый турбобур, но фактического использования не было. Вплоть до 1920-х годов исследования и разработки турбобура снова возродились в США и Советском Союзе. В 1940-х годах в Советском Союзе были произведены дальнейшие разработки турбобура, и большинство нефтяных и газовых скважин в СССР было пробурено с использованием турбобуров.

Турбобур состоит из ряда роторов и статоров, как показано на рис.6, роторы представляют собой лопасти, которые установлены на вертикальном валу, а статоры прикреплены к корпусу турбобура (Инглис, 1987 г.) ; Short 1993). Каждая пара ротор – статор называется «ступенью». Падение давления бурового раствора на каждой ступени должно быть постоянным. Каждая ступень также может вносить равную долю от общего крутящего момента и общей мощности. Количество ступеней зависит от требований и может варьироваться от 1 до 250 ступеней.Турбобуры обычно работают с более высокими частотами вращения, чем ВЗД в диапазоне 2000 об / мин, что делает выбор долота более ограниченным, чем ВЗД. Пропитанные биты более распространены из-за высокой скорости вращения. Турбосверла также доступны в различных размерах, но минимальный размер составляет около 2–7 / 8 ″ в диаметре, а максимальный — около 9 ″, поэтому их нельзя использовать в отверстиях малого диаметра из-за их сложной конструкции.

Рис.6

Принципиальная схема типовой турбобура

Турбобура

также может работать с конусным долотом и долотом PDC для бурения вертикальных, наклонно-направленных, горизонтальных, скважин с увеличенным отходом от вертикали и многоразветвленных скважин.Для выполнения наклонно-направленного бурения турбобура должна работать с гнутым переводником или гнутым корпусом нового типа. К недостаткам относятся высокие скорости вращения, низкий крутящий момент, короткий срок службы подшипников, слишком много быстроизнашиваемых деталей и короткий срок службы долота. Чтобы преодолеть эти недостатки обычных турбо-сверл, было разработано множество специальных турбо-буров, таких как турбомотор с низкой скоростью и высоким крутящим моментом, турбо-бур с редуктором, турбо-бур со спиральным корпусом, и другие новые турбобуры.В настоящее время турбобур в основном применяется для бурения скважин с большим отходом от вертикали и повышения скорости проходки. Кроме того, из-за воздействия высокой температуры возникает дефект при геотермальном бурении с использованием инструментов PDM, полость с резиновым покрытием не может работать в условиях высоких температур. Возможно, для решения этой проблемы удастся использовать турбобур, ведь высокотемпературные рекорды турбобура достигли 260 ° C.

Ориентирующий переводник и изогнутый переводник

Ориентирующий переводник представляет собой короткую утяжеленную бурильную трубку длиной 2 фута, мулесный башмак и ключ предназначены для помощи при исследовании ориентации изогнутого переводника.Изогнутый переводник также представляет собой короткую утяжеленную бурильную трубу длиной 2 фута, ось нижнего соединения немного отклонена от вертикали, угол смещения может варьироваться от 0,5 ° до 3 °. Изогнутый переводник заставляет долото и забойный двигатель бурить в заданном направлении, которое зависит от торца инструмента, в результате чего величина отклонения зависит от жесткости забойного двигателя, угла смещения изогнутого переводника и твердость образования.

Типичный отклоняющий узел показан на рис.7, изогнутый переводник устанавливается на верхнем конце забойного двигателя (PDM или турбобура), а ориентирующий переводник устанавливается на верхнем конце изогнутого переводника для измерения ориентации изогнутого переводника. Ключ «мулеш» переводника ориентации совмещен с линией разметки, так что, когда геодезический инструмент установлен, он будет определять направление торца инструмента (Inglis, 1987). После спуска КНБК до дна ориентацию изогнутого переводника можно измерить с помощью геодезических инструментов в немагнитной манжете, установленной над изогнутым переводником.Для наклонно-направленного бурения без вращения бурильной колонны буровой раствор прокачивается через бурильную колонну для приведения в действие приводного двигателя и привода долота, что заставляет долото бурить в заданном направлении.

Рис.7

Принципиальная схема изогнутого переводника и отклоняющего узла

Для некоторых особых причин, таких как отклонение через окно в обсадной колонне, улучшение управляемости, повышение эффективности работы и т. Д., Были разработаны забойные двигатели с изогнутым корпусом, что позволяет выполнять направленные операции без ориентации и изгиба. суб.Изогнутый корпус может быть установлен внутри самого двигателя, как показано на рис. 8. Изогнутый корпус — это специальное устройство, которое помещается между статором и подшипниковым узлом, чтобы обеспечить небольшой изгиб на 0–3 ° с примерно шестью приращениями в отклонение на градус изгиба, а изогнутый корпус может быть установлен как на верхнем, так и на нижнем конце забойного двигателя. Обычно изогнутый корпус устанавливается на нижнем конце забойного двигателя для достижения высокой отклоняющей способности. В реальной разработке наклонно-направленного бурения как ВЗД с изогнутым переводником, так и корпусом все еще чаще используются при наклонно-направленном и горизонтальном бурении.Существует также много типов ВЗД, как показано на Рис. 8.

Рис. 8

Принципиальная схема типов ВЗД с гнутым корпусом. a Обычная прямая PDM, b PDM с одним изогнутым корпусом, c PDM с регулируемой зарезкой (AKO), d PDM с двойной зарезкой (DKO), e с двойным наклоном универсальный (DTU) PDM и f сборка с фиксированным углом (FAB) PDM

Забойные двигатели также могут использоваться как при скользящем, так и при вращательном бурении, вращательное бурение с забойными двигателями также называется комбинированным бурением или вращательным бурением.Использование забойных двигателей во многом зависит от финансовой эффективности. При вертикальном бурении забойные двигатели могут использоваться исключительно для увеличения скорости проходки или для минимизации эрозии и износа бурильной колонны, поскольку бурильную колонну не нужно вращать с такой скоростью. В основном забойные двигатели используются в наклонно-направленных, включая наклонно-направленные скважины, горизонтальные скважины, скважины с большим отходом от вертикали, скважины с разветвлением. Хотя для направления долота в желаемую целевую зону также могут использоваться другие методы, они требуют больше времени, что увеличивает стоимость строительства скважины.Во время направленной работы применяется скользящий режим бурения, чтобы направлять долото в желаемом направлении; в то время как режим композитного бурения или роторного бурения может быть использован для решения проблем бурения, таких как высокий риск прихвата трубы, высокое сопротивление, плохая очистка ствола скважины, низкая скорость проходки, высокая стоимость и т. д.

Роторная управляемая буровая система (RSDS )

Использование RSDS может помочь в оптимизации наклонно-направленного бурения. Поскольку полное вращение бурильной колонны может уменьшить сопротивление из-за скольжения бурильной колонны, повысить эффективность передачи нагрузки на долото (WOB), тем самым снизить риск прихвата, улучшить скорость проходки и достичь превосходной очистки ствола скважины, как показано на рис.9. Таким образом, RSDS позволяет использовать меньше времени для бурения до цели, улучшая управление траекторией в трех измерениях и пробурив более плавную траекторию скважины, что делает более сложные скважины также могут быть пробурены с использованием инструментов RSDS. Инструмент RSDS может быть установлен на поверхности и предварительно запрограммирован в соответствии с ожидаемой траекторией скважины. Когда команды необходимо изменить, последовательность импульсов в буровом растворе передает новые команды в забой скважины (Даунтон и др., 2000; Хелмс, 2008; Ву, 2012). Характеристики рулевого управления системы RSDS можно контролировать с помощью инструментов MWD, а также датчиков в блоке управления; эта информация передается на поверхность системой связи MWD (Даунтон и др.2000). Промышленность классифицирует RSDS на две группы: более распространенные системы «контроля изгиба» и менее зрелые системы «контроля отклонений». Мы представим три типичных типа RSDS, включая систему «push-the-bit», систему «point-the-bit» и гибридную систему.

Рис. 9

Преимущества ОСБД (по Даунтону и др., 2000 г.)

Система «толкни долото»

Система «толкни долото» использует принцип приложения боковой силы к долоту, прижимая его к стенке ствола скважины для достижения желаемой траектории (Mitchell 2006).Типичные системы «толкни бит» включают систему Schlumberger PowerDrive и систему Baker Hughes AutoTrak, система PowerDrive рассматривается как типичный пример, объясняющий принцип работы систем «толкни бит». Как показано на рис. 10, система PowerDrive механически несложная и компактная, она состоит из блока смещения и блока управления, который увеличивает длину КНБК всего на 12–1 / 2 фута (Даунтон и др., 2000). Узел смещения, расположенный непосредственно за долотом, прикладывает силу к долоту в контролируемом направлении, в то время как вся бурильная колонна вращается.Блок управления, который находится за блоком смещения, содержит электронику с автономным питанием, датчики и механизм управления для обеспечения средней величины и направления боковых нагрузок долота, необходимых для достижения желаемой траектории (Wu 2012). Узел смещения имеет три внешних шарнирных опоры, которые активируются регулируемым потоком бурового раствора через клапан; клапан использует разницу в давлении бурового раствора между внутренней и внешней частью смещения (Al-Yami et al. 2008). Трехходовой поворотный дисковый клапан приводит в действие подушки, последовательно направляя грязь в поршневую камеру каждой подушки, когда она вращается для совмещения с желаемой точкой толкания — точкой, противоположной желаемой траектории — в скважине (Даунтон и др.2000).

Рис.10

Система Schlumberger PowerDrive

Система «наведи бит»

В системе «наведи бит» используется тот же принцип, что и в системах двигателей с гнутым корпусом. В системах с «наведением на долото» изогнутый корпус содержится внутри муфты, поэтому его можно ориентировать в желаемом направлении во время вращения бурильной колонны (Mitchell 2006). Типичные системы «наведи бит» включают систему Halliburton Sperry-sun Geo-Pilot и систему Gyrodata CDAL, система Geo-Pilot рассматривается как типичный пример, объясняющий принцип работы систем «наведи бит». .Как показано на рис. 11, система Geo-Pilot в основном состоит из невращающегося внешнего корпуса, внутреннего вращающегося вала, двойных эксцентриковых колец. Одно эксцентриковое кольцо установлено другое внутреннее, двойные эксцентриковые кольца представляют собой своего рода управляемый эксцентриковый блок, внутреннее кольцо может настраивать внутренний вращающийся вал для отклонения, и, следовательно, изгиб достигается с помощью механических средств, поэтому бит наклоняется относительно остальных инструмента для достижения желаемой траектории (Wu 2012). Другими словами, системы «наведи на долото» изменяют траекторию скважины, изменяя угол забоя инструмента, траектория изменяется в направлении изгиба (Felczak et al.2011). Эта ориентация изгиба контролируется серводвигателем, который вращается с той же скоростью, что и бурильная колонна, но противодействует вращению бурильной колонны. Это позволяет ориентации торца инструмента оставаться геостационарной или невращающейся, в то время как муфта вращается (Al-Yami et al. 2008).

Рис.11

Система Halliburton Sperry-sun Geo-Pilot

Гибридная система «нажми и наведи бит»

PowerDrive Archer RSDS — это настоящая гибридная система «нажми и наведи бит», разработанная Schlumberger (Bryan et al.2009; Wu 2012). Таким образом, система PowerDrive Archer обладает чертами системы «push-the-bit» и «point-the-bit». Как показано на рис. 12, в отличие от систем «толкни долото», система PowerDrive Archer не полагается на внешние движущиеся подушки, которые толкают пласт. Вместо этого четыре исполнительных поршня внутри утяжеленной бурильной трубы прижимаются к внутренней части шарнирно-сочлененной цилиндрической рулевой втулки, которая поворачивается на универсальном шарнире, чтобы направить долото в желаемом направлении (Felczak et al. 2011).Кроме того, четыре стабилизирующих лопасти на внешней втулке над универсальным шарниром обеспечивают боковую силу буровому долоту, когда они контактируют со стенкой ствола скважины, позволяя этому RSDS работать как система «толкни долото». В настоящее время максимальная скорость наращивания составляет приблизительно 17 ° / 100 футов для инструмента PowerDrive Archer RSDS размером 8–1 / 2 дюйма. Это означает, что точное и точное управление позволяет RSDS направлять траекторию скважины в зону наилучшего восприятия коллектора и расширять горизонтальную до общей глубины с более высокой скоростью наращивания, он начинает глубже и поддерживает вертикальность на больших глубинах (Felczak et al.2011).

Рис.12

Система Schlumberger PowerDrive Archer

Кроме того, поскольку RSDS управляется на основе электронной системы управления, необходимо контролировать тепловые повреждения для защиты электронных плат инструмента. В настоящее время система PowerDrive, система AutoTrak и система Geo-Pilot почти могут работать при высокой температуре 200 ° C. При геотермальном бурении нижняя температура всегда выше, чем максимальная мощность RSDS, поэтому нам необходимо контролировать параметры бурения и дополнительную циркуляцию вне забоя, чтобы защитить электронные платы инструмента от тепловых повреждений.

Таблица 3 Сравнение трех типов методов передачи

Система вертикального бурения (VDS)

VDS — это еще один тип направленного инструмента, который используется для предотвращения отклонения и быстрого вертикального бурения, в результате чего увеличивается скорость проходки в глубоких и сверхглубоких скважинах. Это также очень важная техника для глубокого и сверхглубокого сверления из-за того, что на правку часто тратится слишком много времени. Хотя традиционные методы, такие как сборка эксцентриковой оси, эксцентриковая жестко-гибкая сборка, управляемая сборка, противомаятниковая сборка, динамика предварительного изгиба и т. Д., также можно использовать для выпрямления, но для замены бурового инструмента эти методы должны часто отключаться и заходить. VDS позволяет избежать частой выпрямления и автоматически удерживать ствол скважины в вертикальном положении.

В 1988 г. первоначальный инструмент VDS использовался для бурения континентальных научных скважин для программы KTB в Германии, а первоначальный инструмент VDS был разработан Baker Hughes Inteq (Zhang 2005). В программе KTB максимальный угол наклона ствола успешно контролировался в диапазоне от 0 ° до 1 °.С тех пор буровые подрядчики начали разрабатывать инструменты VDS. В настоящее время существует четыре типа типичных инструментов VDS, включая систему Baker Hughes Verti-Trak, систему Schlumberger Power-V, систему Halliburton Sperry-sun V-Pilot и систему Smart Drilling Gmbh ZBE (Zhang 2005). На рисунке 13 показана система Baker Hughes Verti-Trak, она может автоматически удерживать ствол скважины в вертикальном положении без ущерба для критических параметров бурения — дебита, нагрузки на долото или скорости долота. Также можно поддерживать высокую скорость проходки и избежать длительных корректировок.VDS может свести к минимуму вероятность появления ключевых посадочных мест на кривой и уменьшить трение и износ на более поздних участках ствола скважины; Результирующее значительное улучшение качества ствола скважины и достигнутая точная траектория ствола скважины могут позволить использовать «профили тощей обсадной колонны», что снижает количество стали, цемента, бурового раствора и шлама (Reich et al. 2003). Последующие операции в скважине упрощены и более эффективны. Срок службы заканчивания увеличивается, а стоимость капитального ремонта снижается. Системы VDS также полезны для уменьшения расстояния между устьями скважин на поверхности.Системы VDS доступны для отверстий размером от 8–1 / 2 ″ до 9–7 / 8 ″ (инструмент 6–3 / 4 ″) и от 12–1 / 4 ″ до 28 ″ (9–1 / 2 ″. инструмент).

Рис.13

Система VDS Baker Hughes Verti-Trak

Метод направленной съемки

Метод направленной съемки, ключевой аспект управления траекторией, измеряет наклон и направление на различных глубинах. Измерение торца инструмента требуется для определения направления отклонителя, изогнутого переводника или изогнутого корпуса.Таким образом, метод исследования также является ключом к наклонно-направленному бурению, которое подразделяется на две группы: более распространенные инструменты измерения во время бурения (MWD) и менее зрелые инструменты измерения после бурения (Short 1993; Chen 2011; Han 2011; Wu 2012). Магнитные однозарядные инструменты, магнитные многозарядные инструменты, электронные одноразовые инструменты и электронные многозадачные инструменты обычно используются для измерения траектории ствола скважины после бурения, но это неудобно и неэффективно для направленного бурения.Для решения этой проблемы были разработаны инструменты MWD для измерения траектории ствола скважины во время бурения. Ключевые методы MWD включают в себя метод обследования и метод передачи. Инструменты MWD применялись почти во всех наклонно-направленных скважинах по всему миру. Но в одно- и многозарядных приборах применяются вертикальные скважины. Мы сосредоточимся на методах MWD:

Методика измерений

Существует три вида скважинной информации, информация о направлении, информация о бурении и информация о пласте, которые необходимо измерять во время бурения (Wu 2012; Ma and Chen 2014; Ma et al.2015b). Информация о направлении может быть измерена с помощью обычных инструментов MWD. Измерение буровых работ было разработано на основе обычного метода MWD, в то время как измерение информации о пласте было разработано на основе традиционного метода каротажа и в основном использовалось для геонавигационного бурения для корректировки геологической цели в реальном времени.

Информация о направлении

Инструменты MWD, как правило, способны выполнять направленные исследования в реальном времени. Акселерометры и магнитометры используются для измерения наклона и азимута, а информация о наклоне и азимуте передается от места измерения на поверхность.Траекторию и местоположение ствола скважины можно рассчитать, используя данные разведки. Между тем, инструменты MWD также, как правило, способны обеспечивать измерения торца инструмента во время паузы в бурении, что позволяет использовать его при наклонно-направленном бурении с использованием отклонителя, забойного двигателя + изогнутого переводника, забойного двигателя с гнутым корпусом или инструмента RSDS. . Информация о направленности может помочь оператору наклонно-направленного бурения узнать, куда идет скважина и каковы последствия его усилий по рулевому управлению (Mitchell 2006; Chen 2011).

Инженерная информация по бурению

Для предотвращения аварий в стволе скважины и повышения эффективности бурения инструменты MWD также были разработаны для измерения инженерной информации по бурению, такой как забойное давление, нагрузка на долото, крутящий момент на долоте (TOB) , скорость вращения, вибрация, удар, температура, объем потока бурового раствора и т. д. (Ma and Chen 2015). Обычно инженерная информация измеряется с помощью специального отдельного вспомогательного инструмента и загружается с помощью инструментов MWD. На основе этой информации в режиме реального времени могут быть определены скважинные условия и рабочее состояние буровых инструментов, что делает операции бурения более эффективными, безопасными и экономичными.Кроме того, эта информация также ценна для геологов, ответственных за скважинную информацию о пробуренной формации (Mitchell 2006).

Информация о пласте

Обычные инструменты MWD, либо сами по себе, либо в сочетании с отдельными переводниками / инструментами, как правило, способны выполнять измерения свойств пласта в реальном времени, это так называемый каротаж во время бурения (LWD), который получил развитие от традиционных методов каротажа. Обычно доступна следующая информация о пласте, такая как естественное гамма-излучение, плотность, пористость, удельное сопротивление, акустический кавернометр, магнитный резонанс, пластовое давление и т. Д.Из-за влияния длины, включая забойные двигатели, вспомогательные инструменты и инструменты LWD, точка измерения информации о направлении должна перемещаться вверх, что снижает точность управления траекторией скважины. Таким образом, был разработан инструмент для измерения наклона около долота для измерения информации о направлении на буровом долоте. Измерения вблизи долота, такие как гамма-лучи, угол наклона и азимут, позволяют оператору внимательно следить за ходом бурения (Felczak et al. 2011). Обычный инструмент MWD позволяет передавать и оценивать эти измерения в реальном времени, что позволяет реализовать геоуправление.Геологическая цель также может быть скорректирована в соответствии с эволюцией свойств пласта, это так называемое георегулирующее бурение (Wu 2012). Измерения вблизи долота, такие как гамма-лучи, угол наклона и азимут, позволяют оператору внимательно следить за ходом бурения.

Метод передачи

В зависимости от среды передачи методы передачи скважинных данных можно разделить на три типа: гидроимпульсная телеметрия, электромагнитная телеметрия и проводная бурильная труба, их основные характеристики можно отсортировать в таблице 3.

Телеметрия с гидроимпульсом

Телеметрия с гидроимпульсом — это метод передачи скважинных данных (включая данные LWD и MWD) на поверхность с использованием импульсов давления бурового раствора внутри бурильной колонны (Chen 2011; Wu 2012 ). Для достижения цели передачи скважинных данных используется скважинный клапан для ограничения потока бурового раствора, который создает колебания давления и распространяется в буровом растворе к поверхности, где они поступают из стояка. датчики давления.Другими словами, информация представлена ​​сигналами давления, которые поступают от датчиков давления в стояке. Полученные сигналы давления импортируются в компьютерную систему обработки и декодируются в измерения. Как правило, измерения кодируются в виде амплитудной или частотной модуляции импульсов бурового раствора (Chen 2011; Wu 2012). Телеметрия с гидроимпульсным сигналом является наиболее распространенным методом передачи данных, используемым инструментами MWD. В настоящее время гидроимпульсная телеметрия доступна в трех группах, включая положительный импульс, отрицательный импульс и непрерывную волну.

  1. а)

    Инструменты MWD с положительным импульсом: как показано на рис. 14a, клапан на короткое время закрывается и открывается для создания импульсов давления. Когда клапан закрывается, давление в стояке увеличивается. Таким образом, этот метод называется положительно-импульсным. Это также наиболее распространенный метод, используемый инструментами MWD.

    Рис. 14

    Три метода гидроимпульсной телеметрии. a положительный импульс, b отрицательный импульс и c непрерывный импульс

  2. (б)

    Инструменты MWD с отрицательным импульсом: как показано на рис.14b клапан ненадолго открывается и закрывается для создания импульсов давления. Как только клапан открывается, давление в напорной трубе снижается. Таким образом, этот метод называется отрицательно-импульсным.

  3. (c)

    Инструменты MWD с непрерывной волной: как показано на рис. 14b, значение упорядоченно закрывается и открывается для генерации синусоидальных импульсов давления во время вращения.Любая схема цифровой модуляции с непрерывной фазой может использоваться для наложения информации на сигнал несущей. Наиболее широко используются схемы модуляции с непрерывной фазовой модуляцией (Wu 2012).

Современные инструменты MWD с гидроимпульсным управлением в основном представляют собой положительные и отрицательные импульсы, хотя скорость передачи (0,5–3,0 бит / с) ниже, чем у инструментов MWD с непрерывной волной, их стабильность намного лучше, а стоимость также ниже .Инструмент непрерывной волны MWD предлагает полосу пропускания до 18 бит / с. Скорость передачи падает с увеличением длины ствола скважины и обычно составляет 1,5–3,0 бит / с на глубине 10 000 м. Кроме того, при использовании аэрированного бурения на депрессии или аэрации бурового раствора сжимаемость бурового раствора увеличивается, что также снижает пропускную способность бурового раствора. В этом случае рекомендуется электромагнитная телеметрия MWD или проводная телеметрия бурильных труб.

Электромагнитная телеметрия

Электромагнитная телеметрия также называется EM-MWD.Для передачи скважинной информации инструменты EM-MWD включают излучающую субантенну в бурильную колонну, а другая принимаемая антенна устанавливается на поверхности, как показано на рис. 15. Инструмент EM-MWD генерирует электромагнитные волны с помощью излучающая субантенна, электромагнитные волны передают скважинную информацию через пласт на поверхность. На поверхности они принимаются наземной антенной, затем передаются в центр обработки поверхности и декодируются в измерения.Другими словами, инструмент EM-MWD передает электромагнитные волны через пласт вместо импульсов давления через столб жидкости. Таким образом, преимущества включают экономию времени за счет передачи данных разведки во время соединения, высокие скорости передачи данных и возможность работать в условиях, в которых не может работать гидроимпульсная телеметрия, таких как бурение с аэрацией на депрессии и бурение с использованием воздуха. Инструмент EM-MWD предлагает полосу пропускания до 400 бит / с. Однако при бурении исключительно глубоких скважин он обычно не работает, и сигнал может быстро терять силу при ослаблении пластов, эти зоны делают использование инструментов EM-MWD непрактичным.Чтобы преодолеть эту проблему, были изобретены некоторые усовершенствованные методы определения мощности и обнаружения сигнала EM-MWD, такие как повторители бурильной колонны, повторители обсадных труб, повторители проводов и т. Д. Эти методы обычно используются при бурении на депрессии и при аэрированном бурении на депрессии. воздушное бурение.

Рис.15

Принципиальная схема электромагнитной телеметрии

Бурильная труба с проводом

Бурильная труба с проводом также называется электрической бурильной колонной или интеллектуальной бурильной колонной.Бурильная труба с проводкой была впервые изобретена в 1997 году при финансовой поддержке компании Новатэк и Министерства энергетики США. В 2001 году Национальная лаборатория энергетических технологий (NETL) начала предоставлять финансирование для проекта бурильных труб и дополнительного проекта передачи данных по буровым трубам (Hernandez and Long 2010), результаты исследований включают сеть IntelliServ и Intellipipe. В 2006 году первая коммерческая бурильная труба с проводкой (продукт IntelliServ) была использована в Мьянме (Edwards et al.2013). В настоящее время IntelliServ, широкополосная сетевая система бурильной колонны, является продуктом National Oilwell Varco (NOV), который используется для передачи скважинной информации на поверхность во время бурения. Компоненты сети IntelliServ встроены в компоненты бурильной колонны (рис. 16), известные как IntelliPipe, которые передают геологические данные со скоростью 57 000 бит в секунду (Edwards et al. 2013). Кабельная бурильная труба обеспечивает высокоскоростной телеметрический канал от забоя к поверхности, а также позволяет передавать информацию на скважинные инструменты для управления с обратной связью.Кроме того, измерительные узлы также могут располагаться по всей длине бурильной колонны, что позволяет операторам собирать данные вдоль ствола скважины (рис. 16). Измерения могут включать в себя всю скважинную информацию, такую ​​как информация о направлении, инженерная информация о бурении и информация о формации. На передачу данных больше не влияют свойства бурового раствора, свойства пласта и глубина. Однако бурильные трубы с проводкой по-прежнему слишком дороги, надежность все еще требует повышения из-за схемы тандемного соединения, бурильные трубы с проводкой не могут работать, даже если отсутствует только одно соединение.

Рис. 16

Принципиальная схема бурильной трубы с проводкой (по Эдвардсу и др., 2013 г.)

Кроме того, из-за измерений инструментов MWD, основанных на электронных технологиях, необходимо контролировать повреждения, связанные с нагревом, для защиты электронных плат инструмента. В настоящее время большинство инструментов MWD могут работать при температуре 150 ° C, некоторые инструменты MWD могут работать при высоких температурах до 200 ° C. При геотермальном бурении нижняя температура всегда выше, чем максимальная производительность инструментов MWD, что делает инструменты MWD / LWD нестабильными, поэтому нам необходимо контролировать параметры бурения и дополнительную циркуляцию вне забоя, чтобы защитить электронные платы инструмента от тепловых повреждений.

Буровые долота

В нефтегазовой промышленности буровое долото — это инструмент, предназначенный для создания цилиндрического отверстия (ствола скважины) в земной коре методом вращательного бурения. Размер ствола скважины, вызванный буровыми долотами, очень мал, от 3–1 / 2 ″ до 30 ″ (Centala et al. 2011; Bruton et al. 2014; Azar et al. 2015). Глубокие пласты разрушаются механически режущими элементами (называемыми зубами или резцами) долота путем соскабливания, шлифования или локализованного сжатия трещин (Chen 2011).На основе режущего механизма промышленность классифицирует буровые коронки на две группы: шарошечные долота, долота с фиксированным резцом и гибридные долота.

Долота с роликовыми конусами

В долотах с роликовыми конусами обычно используются три конуса для удерживания зубьев, как показано на рис. 17, хотя иногда можно увидеть расположение с одним, двумя или четырьмя конусами. Долото с роликовым конусом состоит из корпуса, ножки, конуса, подшипника, уплотнения, зуба и сопла. Он бурит в основном за счет разрыва или дробления породы с помощью «зубцов» на конусах, которые катятся по поверхности ствола скважины при вращении долота.Роликовые конические коронки также можно разделить на два класса в зависимости от изготовления зубьев, например, фрезерованные зубчатые коронки и коронки из карбида вольфрама (TCI).

Рис.17

Типичные шарошечные долота

  1. 1.

    Долота с фрезерованными зубьями, также называемые долотами со стальными зубьями, имеют конусы с клиновидными зубьями, фрезерованными непосредственно в самой конической стали (Centala et al.2011).

  2. 2.

    Биты TCI имеют формованные зубья из спеченного карбида вольфрама, запрессованные в просверленные отверстия в конусах, карбид вольфрама нанесен на поверхности зубьев для повышения долговечности из-за его чрезвычайной твердости. Зуб TCI также применялся в некоторых типах фрезерованных коронок. Для дальнейшего повышения долговечности буровых коронок также должны быть разработаны некоторые современные материалы, такие как альвеолятный алмазный материал и карбид вольфрама с двойным цементированием.Конусы вращаются на подшипниках, которые обычно герметизированы вращающимся уплотнительным кольцом или металлическим торцевым уплотнением для защиты от среды бурового раствора в забое скважины. Долота с шарошечным конусом могут адаптироваться к инструментам с низкой, высокой, высокой температурой, высокой нагрузкой на долото и ВЗД; Области применения шарошечных долот включают высокоабразивные образования, мягкие абразивные образования, твердые образования. Для глубокого или геотермального бурения высокотемпературное шарошечное долото может быть специально разработано для работы в высокотемпературных условиях бурения, таких как геотермальные скважины, в течение продолжительных периодов времени.Долота с шарошечным конусом TCI, используемые для бурения твердых и абразивных пластов с целью доступа к пару или горячей породе в подземных пластах, подвергаются воздействию температур, превышающих 260 ° C.

Долота с фиксированными резцами

Долота с фиксированными резцами были первым типом буровых коронок, которые использовались при вращательном бурении, их режущие механизмы намного проще, чем у шарошечных долот, поскольку режущие элементы не перемещаются относительно долота.Долота с фиксированными режущими кромками можно разделить на четыре класса в зависимости от изготовления зубьев, такие как долота с поликристаллическим алмазом (PDC), долота из природного алмаза и долота с пропиткой (рис. 18).

Рис.18

Типичные фиксированные фрезы

  1. 1.

    Буровая коронка была первым типом бурового долота, который использовался при вращательном бурении, но его можно использовать только в мягких породах, поэтому в настоящее время оно редко используется в нефтяном бурении.

  2. 2.

    Долото из PDC является наиболее распространенным буровым долотом, используемым сегодня, благодаря преимуществам высокой скорости проходки, долгому сроку службы и продолжительности бурения. Долото PDC состоит из корпуса, фрезы и насадки. Резец PDC (зуб) представляет собой цилиндр из спеченного карбида вольфрама с одной плоской поверхностью, покрытой синтетическим алмазным материалом. Резцы расположены на лопастях долота в шахматном порядке, при этом поверхность резца с алмазным покрытием обращена в направлении вращения долота, чтобы обеспечить полное покрытие забоя скважины (Bruton et al.2014; Азар и др. 2015). Долота PDC могут адаптироваться к низкой нагрузке на долото, высокой частоте вращения, высокой температуре, PDM, турбо-буровым станкам и даже RSDS; Применение долот PDC включает однородные пласты, пласты мягкой и средней твердости, но бурение твердых и абразивных межслоевых интервалов было непрактичным для долот PDC.

  3. 3.

    Насадка с натуральным алмазом и коронка с пропиткой похожи, самая большая разница — фрезы.В сверле из натурального алмаза используются алмазные резцы из природного промышленного алмаза, которые вставляются в матрицу корпуса долота, а в импрегнированном долоте используются алмазные резцы с термостойкими поликристаллическими (TSP). Благодаря этому алмаз отличается наибольшей твердостью и высокой прочностью, что позволяет ему адаптироваться к твердым абразивным образованиям. Эти долота доступны в различных стилях как для моторного, так и для роторного бурения твердых или абразивных пород. Хотя алмазы дороги, долговечность долот также достаточно высока, что делает их конкурентоспособными при бурении нефтяных скважин.Долота с природным алмазом получили широкое распространение в бурении RSDS, бурении турбобуров и колонковом бурении.

Кроме того, фрезы обычных фиксированных долот закреплены на корпусе долота, они легко изнашиваются и снижают срок службы долота. Чтобы решить эту проблему, СМИТ разработал режущий плоттер PDC, названный ONYX 360 (Bruton et al. 2014). Вращающийся резец PDC ONYX 360 значительно увеличивает долговечность долота PDC за счет поворота на 360 °, как показано на рис.19. Вся алмазная кромка PDC-резака ONYX 360, расположенного в зонах сильного износа режущей конструкции, используется для резки пласта. Вращающееся действие фрезы позволяет алмазной кромке фрезы оставаться острее дольше, продлевая срок службы фрезы ONYX 360 по сравнению с фиксированными фрезами премиум-класса. На основе данных, полученных при использовании 13-миллиметрового резака ONYX 360, был разработан резак 16 мм, обеспечивающий повышенную прочность и долговечность. По сравнению с долотами с фиксированным резцом, долота PDC, в состав которых входили вальцовые резцы ONYX 360, показали увеличение длины пробега до 57%, что привело к меньшему количеству спусков долота и снижению затрат на бурение.

Рис.19

Сравнение фиксированного резака PDC и резака ONYX 360

Гибридные долота

С популяризацией и применением долот PDC и технологии резцов PDC для улучшения стационарных резцов буровые долота PDC в различных пластах постепенно заменяют конические долота. Но в твердых абразивных пластах и ​​при сложных операциях направленного бурения из-за производительности буровое долото PDC не может заменить коническое долото. Для решения этой проблемы в настоящее время также доступен гибридный тип долота, в котором сочетаются как накатная фреза, так и фиксированные режущие элементы (Pessier and Damschen 2011), как показано на рис.20. Существует две конструкции: одна представляет собой малоразмерное двухстворчатое долото с двойным конусом, а другая — немного большее по размеру крыло Mito, трехконусное сверло, основанное на этих сверлах с четырьмя ножами и шестью лопастями, сверло PDC, лопасти тисков и короткие позиции были заменены на конус. Таким образом, центральное положение ствола скважины располагается на PDC-резце хирургического крыла для полного разрушения породы, а периферийная часть бурения скважины завершается резцами и лопастями, эффект разрушения породы зависит от конусов, лопастей и их сопряжения.Это гибридное сверло предназначено для сокращения времени бурения в самых сложных условиях. Благодаря прочности на раздавливание и стабильности конусов валков, а также превосходному резанию и непрерывному режущему действию алмазных коронок, эта технология позволяет выживать в сильно переслаивающихся пластах с стабильной производительностью и отличным контролем торца инструмента. В приложениях размером 12–1 / 4 дюйма в США операторы достигают увеличения скорости бурения до 62%; длина пробега одиночных долот увеличивается более чем на 200%, сокращая выходные дни по сравнению со стандартным временем работы буровой установки.В Бразилии оператор пробурил на 90% быстрее и на 20% дальше, чем выносы. По сравнению с шарошечными долотами, вы можете увеличить скорость проходки и снизить нагрузку на долото с меньшим отскоком долота. По сравнению с PDC, наблюдается значительно повышенная долговечность в переслаивающихся пластах, меньшее прилипание-проскальзывание, более низкий и более стабильный крутящий момент при бурении, а также лучшая стабильность и управление направлением.

Фиг.20

Кроме того, некоторые типы специальных долот разработаны с учетом требований для направленного бурения, бурения с управляемым ротором, бурения с управляемым двигателем, бурения с воздушным потоком, тонкого ствола, колонкового бурения, бурения боковых стволов, пилотного бурения, бурения с расширением, бурения на обсадных трубах и т. Д.Таким образом, мы можем выбрать подходящие долота для проведения соответствующего бурения.

Буровые растворы

Термин буровой раствор (или раствор) охватывает все составы, используемые для добычи и удаления выбуренной породы из скважины в земле (Дарли и Грей, 1988). Буровой раствор закачивается из буровых ям с помощью буровых насосов, прокачивается через наземный трубопровод, стояк, буровую вертлюг, бурильную колонну и разбрызгивается из сопел на буровое долото, затем очищается от обломков породы (или выбуренной породы) и охлаждается буровая установка. инструменты.Таким образом, шлам выносится на поверхность через раствор в затрубном пространстве. На поверхности шлам отфильтровывается с помощью сланцевого шейкера, а отфильтрованный ил возвращается в ямы. В этом процессе основные функции бурового раствора можно резюмировать следующим образом (Дарли и Грей, 1988; Канн и др., 2011; Чен, 2011): вынос шлама на поверхность, охлаждение и смазка долота и бурильных инструментов, очистка под долотом, уравновешивать пластовое давление, герметизировать проницаемые пласты, передавать гидравлическую энергию на скважинные инструменты и долото, поддерживать стабильность ствола скважины, контролировать коррозию инструментов и контролировать повреждение пласта.Существует много типов бурового раствора или бурового раствора, которые используются при бурении нефтяных скважин, они классифицируются в зависимости от их основы: буровой раствор на газовой основе (GBDF), буровой раствор на водной основе (WBM), буровой раствор на нефтяной основе (OBM).

  1. 1.

    Буровой раствор на газовой основе (GBDF): GBDF означает, что непрерывная фаза бурового раствора представляет собой газ, включает воздух, азот, выхлоп дизельного двигателя, природный газ, буровой раствор в виде тумана и пену для бурового раствора (Chen 2011).Воздух, азот, выхлопные газы дизельных двигателей и природный газ в основном используются при газовом бурении или бурении на депрессии, шлам удаляется с помощью высокоскоростного воздушного потока. Однако из-за накопления воды при глубоком бурении шлам не может быть вынесен из забоя. Поэтому буровые растворы в виде тумана или пены обычно используются для решения проблем с добычей воды, возникающих при глубоком бурении. Иногда жидкий буровой раствор также используется для решения некоторых серьезных проблем с добычей воды. Кроме того, GBDF не может адаптировать все типы формаций, ее можно использовать только в стабильных формациях.Из-за давления колонны ГБДФ недостаточно для поддержания устойчивости ствола скважины.

  2. 2.

    Буровой раствор на водной основе (WBM): вода является непрерывной фазой бурового раствора. Самым простым буровым раствором на водной основе может быть вода, что означает, что в раствор не добавлены какие-либо лечебные агенты или добавки. Однако вода не может приспособиться к подавляющему большинству глубоких пластов.Поэтому инженеры добавляют некоторые добавки для регулировки производительности в соответствии с требованиями глубокого бурения. WBM может содержать несколько растворенных веществ. К ним относятся щелочи, соли и поверхностно-активные вещества; органические полимеры в коллоидном растворе; капельки эмульгированного масла; и различные нерастворимые вещества (такие как барит, глина и стружка) в суспензии (Дарли и Грей, 1988). К наиболее распространенным нерастворимым веществам, используемым в WBM, относятся глина и барит. Глина используется для создания однородной смеси, что делает ее жидкой суспензией, в то время как барит обычно используется для регулировки плотности WBM.В процессе бурения из-за перемешивания бурового шлама, солей и поровой жидкости в WBM характеристики WBM не могут оставаться неизменными, щелочи, соли, поверхностно-активные вещества и полимеры, таким образом, добавляются в WBM. В общем, реологические свойства и характеристики строительства стены обезвоживания WBM являются ключевыми, и их трудно регулировать. Между тем, ингибирующая способность WBM также очень важна для бурения сланцевых пластов из-за влияния физико-химического эффекта между сланцами и буровым раствором.Таким образом, химические добавки обычно добавляют в систему WBM для достижения различных эффектов, включая контроль реологических свойств, удаление загрязнений, стабильность сланца, повышение скорости проходки при бурении, охлаждение и смазку оборудования. Для глубокого или геотермического бурения, из-за влияния глубины, высокой солености, высокого давления и высокой температуры, плотность бурового раствора должна быть улучшена с использованием барита и порошка железной руды, реологические свойства и характеристики строительства стены обезвоживания больше трудно контролировать, как показывает реология при низких и высоких температурах, трудно учесть, потери воды в HPHP большие и глинистая корка толстая.Максимальная рабочая температура WBM составляет около 200 ° C. Итак, ключевая проблема заключается в том, как улучшить термостойкость WBM.

  3. 3.

    Буровой раствор на масляной основе (OBM): буровой раствор на масляной основе — это буровой раствор, в котором базовой жидкостью является нефтепродукт, такой как дизельное топливо. Технология РУО продвинулась от использования только сырой нефти как средства повышения продуктивности до использования многофункциональных композиций, которые сыграли свою роль в многочисленных рекордных скважинах (Дарли и Грей, 1988).РУО используется по многим причинам, таким как повышенная смазывающая способность, улучшенное ингибирование сланца и улучшенные очищающие способности при меньшей вязкости. Кроме того, OBM также может выдерживать более высокие температуры, не ломаясь. Применения применялись в условиях экстремальных температур, высокого давления, водочувствительных сланцев, агрессивных газов и водорастворимых солей (Дарли и Грей, 1988; Каенн и др., 2011). Проблемы прихвата трубы, чрезмерного крутящего момента и сопротивления в наклонно-направленных стволах, а также унос газа в буровой раствор были сведены к минимуму.Однако использование РУО имеет особые соображения, включая стоимость, экологические соображения, такие как размещение выбуренной породы в подходящем месте, и исследовательские недостатки использования бурового раствора на нефтяной основе. Следовательно, РУО может быть хорошим выбором для решения связанных проблем, вызванных высокой плотностью, соленостью, высоким давлением и высокой температурой. Максимальная рабочая температура OBM зафиксирована выше 220 ° C.

При вертикальном бурении глубоких скважин высокое давление / высокая температура (HP / HT) могут быть основными факторами, которые влияют на свойства буровых растворов.При горизонтальном бурении и бурении с большим отходом от вертикали главными факторами могут быть смазывающие свойства и несущая способность резания. Однако при геотермальном бурении из-за чрезвычайно высокого давления / высокой температуры (HP / HT), сложной системы давления в стволе скважины и множества источников загрязнения буровым раствором плотность, реологические свойства и характеристики обезвоживающей стенки бурового раствора являются более сложными. поддерживать. В настоящее время OBM и WBM обычно используются при бурении глубоких скважин во всем мире, а максимальная рабочая температура бурового раствора близка к 220 ° C, максимальная плотность бурового раствора составляет около 2.4–2,7 г / см 3 .

3. Национальное значение бурения | Технологии бурения и земляных работ будущего

Кабак Д. С., Луни Б. Б., Кори, Дж. К., Райт, Л. М. и Стил, Дж. Л., 1989a, Горизонтальные скважины для восстановления грунтовых вод и почв на месте: Westinghouse Savannah River Co. DE-AC09-76SR00001, 16 с.

Кабак Д. С., Луни Б. Б., Кори, Дж. К. и Райт, Л. М., 1989b, Отчет о завершении скважин по установке горизонтальных скважин для проведения восстановительных испытаний на месте: Westinghouse Savannah River Co., отчет подготовлен по контракту DOE No. DE-AC090-88SR18035, 185 с.

Кито, С., 1993, Анализ влияния окончания периода фиксированных цен на энергию по промежуточным контрактам Стандартного предложения 4: Бюллетень Совета по геотермальным ресурсам, т. 22 (3), стр. 61-67.

Крамер С. Р., Макдональд В. Дж. И Томсон Дж. К., 1992, Введение в бестраншейную технологию: Нью-Йорк, Ван Ностранд Рейнхольд, 223 стр.

MacGregor, I., 1993, Национальный научный фонд, личное сообщение.

Глушитель, Л. Дж. П. (редактор), 1979, Оценка геотермальных ресурсов США — 1978: Циркуляр Геологической службы США 790, 163 стр.

Национальный нефтяной совет, 1992, Потенциал природного газа в Соединенных Штатах, Вашингтон, округ Колумбия, NPC, 7 v.

Национальный исследовательский совет, 1979, Continental Scientific Drilling Program: Вашингтон, округ Колумбия, National Academy Press, 192 стр.

Национальный исследовательский совет, 1988 г., Научное бурение и углеводородные ресурсы: Вашингтон, Д.К., National Academy Press, 89 стр.

Национальный исследовательский совет, 1992 г., Обзор долгосрочного плана программы бурения в океане: Вашингтон, округ Колумбия, National Academy Press, 13 стр.

Nuclear Waste News, 1991, т. 11 (49), стр. 484, 12 декабря 1991 г.

Nuclear Waste News, 1992a, т. 12 (14), стр. 129, 2 апреля 1992 г.

Nuclear Waste News, 1992b, т. 12 (43), стр. 404, 29 октября 1992 г.

Nuclear Waste News, 1992c, v. 12 (15), p. 135, 9 апреля 1992 г.

Nuclear Waste News, 1992d, т. 12 (47), стр. 439, 3 декабря 1992 г.

Nuclear Waste News, 1992e, т. 12 (40), стр. 369, 8 октября 1992 г.

Nuclear Waste News, 1992f, т. 12 (7), стр. 57, 13 февраля 1992 г. (цитируется Л. Даффи).

Группа по нефтяным ресурсам, 1992, Оценка базы нефтяных ресурсов США, Комментарий Фишера, У. Л., Тайлера, Н., Рутвена,

добыча нефти | Определение и факты

Добыча нефти , добыча сырой нефти и, часто, попутного природного газа с Земли.

полупогружная платформа для добычи нефти

Полупогружная платформа для добычи нефти, работающая в воде на глубине 1800 метров (6000 футов) в бассейне Кампос, у побережья штата Рио-де-Жанейро, Бразилия.

© Divulgação Petrobras / Agencia Brasil (CC BY-SA 3.0 Brazil)

Нефть — это природный углеводородный материал, который, как полагают, образовался из остатков животных и растений в глубоких осадочных слоях. Нефть, будучи менее плотной, чем окружающая вода, вытеснялась из пластов-источников и мигрировала вверх через пористые породы, такие как песчаник и известняк, пока не была окончательно заблокирована непористой породой, такой как сланец или плотный известняк.Таким образом, нефтяные месторождения оказались в ловушке геологических особенностей, вызванных складчатостью, разломами и эрозией земной коры.

Трансаляскинский трубопровод

Трансаляскинский трубопровод проходит параллельно шоссе к северу от Фэрбенкса.

© Райнер Гросскопф — Photodisc / Getty Images

Нефть может существовать в газообразной, жидкой или почти твердой фазе по отдельности или в комбинации. Жидкую фазу обычно называют сырой нефтью, а более твердую фазу можно назвать битумом, гудроном, смолой или асфальтом.Когда эти фазы встречаются вместе, газ обычно находится над жидкостью, а жидкость — над более твердой фазой. Иногда нефтяные залежи, поднятые во время образования горных хребтов, подвергались эрозии с образованием смолистых отложений. Некоторые из этих месторождений были известны и эксплуатировались на протяжении всей истории человечества. Другие приповерхностные залежи жидкой нефти медленно просачиваются на поверхность через естественные трещины в вышележащих породах. Накопления из этих просачиваний, называемые каменным маслом, в 19 веке использовались в коммерческих целях для производства лампового масла простой дистилляцией.Однако подавляющее большинство нефтяных месторождений находится в порах естественной породы на глубине от 150 до 7600 метров (от 500 до 25000 футов) от поверхности земли. Как правило, более глубокие отложения имеют более высокое внутреннее давление и содержат большее количество газообразных углеводородов.

Когда в XIX веке было обнаружено, что каменное масло дает дистиллированный продукт (керосин), пригодный для фонарей, начались активные поиски новых источников каменного масла. В настоящее время все согласны с тем, что первой скважиной, пробуренной специально для обнаружения нефти, была скважина Эдвина Лорентина Дрейка в Титусвилле, штат Пенсильвания, США.S., в 1859 году. Успех этой скважины, пробуренной рядом с выходом нефти, побудил продолжить бурение в том же районе и вскоре привел к аналогичным исследованиям в другом месте. К концу века растущий спрос на нефтепродукты привел к бурению нефтяных скважин в других государствах и странах. В 1900 году мировая добыча сырой нефти составляла почти 150 миллионов баррелей. Половина этого объема была произведена в России, а большая часть (80 процентов) остальной части была произведена в Соединенных Штатах ( см. Также бурового оборудования).

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Появление и рост использования автомобилей во втором десятилетии 20-го века создали большой спрос на нефтепродукты. Годовая добыча превысила один миллиард баррелей в 1925 году и два миллиарда баррелей в 1940 году. К последнему десятилетию 20-го века в более чем 100 странах насчитывалось почти один миллион скважин, добывающих более 20 миллиардов баррелей в год. К концу второго десятилетия XXI века добыча нефти выросла почти до 34 миллиардов баррелей в год, из которых растущая доля была обеспечена за счет сверхглубоководного бурения и добычи нетрадиционной нефти (при которой нефть добывается из сланцев, битуминозных песков и т. или битум, или извлекается другими методами, отличными от обычного бурения).Нефть добывается на всех континентах, кроме Антарктиды, которая защищена от разведки месторождений в соответствии с экологическим протоколом к ​​Договору об Антарктике до 2048 года.

Первоначальная скважина Дрейка была пробурена недалеко от известного места просачивания сырой нефти с поверхности. В течение многих лет такие просачивания были единственным надежным индикатором наличия подземных запасов нефти и газа. Однако по мере роста спроса были разработаны новые методы оценки потенциала подземных горных пород. Сегодня разведка нефти требует интеграции информации, собранной в результате сейсмических исследований, геологического построения, геохимии, петрофизики, сбора данных географических информационных систем (ГИС), геостатистики, бурения, разработки резервуаров и других методов исследования поверхности и недр.Геофизические исследования, включая сейсмический анализ, являются основным методом разведки нефти. Методы гравитации и магнитного поля также являются исторически надежными методами оценки, которые можно применять в более сложных и сложных условиях разведки, таких как подсолевые структуры и глубоководные участки. Начиная с ГИС, гравиметрические, магнитные и сейсмические исследования позволяют геологам эффективно сосредоточить поиск целевых объектов для исследования, тем самым снижая риски, связанные с разведочным бурением.

сырая нефть

Натуральный выход нефти.

Предоставлено Норманом Дж. Хайном, доктором философии.

Существует три основных типа методов разведки: (1) наземные методы, такие как картографирование геологических объектов с помощью ГИС, (2) территориальные исследования гравитационных и магнитных полей и (3) сейсмографические методы. Эти методы указывают на наличие или отсутствие геологических особенностей, благоприятных для залежей нефти. До сих пор нет возможности предсказать наличие продуктивных подземных залежей нефти со 100-процентной точностью.

Технологические разработки устьевых систем повышают эффективность и безопасность буровых работ

Характеристики

По мере развития операций по бурению и заканчиванию сланцев, появляются и технологии управления устьем скважины. Устьевая система RSH обеспечивает больший контроль над скважиной, безопасность и экономическую эффективность сланцевых участков в U.С. и далее.

Бланка Монтойя, Нокс Райт, Baker Hughes, компания GE

Много было написано о сланцевом буме, начавшемся более десяти лет назад в США. Сочетание благоприятных цен на нефть, технологических инноваций и растущего мирового спроса на энергию помогло сланцевой промышленности превратить сланцевую нефть в экономически выгодный источник огромных объемов добычи. добыча нефти и газа.

Традиционные методы бурения с начала 19 века, такие как бурение вертикальных скважин в обычных богатых нефтью коллекторах по всей территории США, часто оставляли в пласте большие объемы извлекаемой нефти и газа из-за ограниченной связи. Кроме того, истощение этих традиционных коллекторов на протяжении десятилетий повысило потребность отрасли в более широких технологических инновациях — спрос, который был удовлетворен развитием технологии горизонтального бурения, завершения гидравлического разрыва пласта и кустового бурения для нетрадиционных коллекторов.По мере изучения и тестирования этих достижений на своих сланцевых скважинах операторы начали доводить свои операции по строительству скважин до новых пределов. Бурение более длинных стволов стало нормой, что привело к значительному повышению скорости извлечения и возможности более эффективно бурить и добывать одну зону.

В то же время отрасль столкнулась с повышенными требованиями к контролю скважин и потребностями операторов в управлении и сокращении времени и общих затрат на скважину, одновременно снижая риски для безопасности рабочих.На этот призыв был дан ответ путем разработки ведущей в отрасли устьевой системы, которая в полной мере использует преимущества повышения эффективности технологий буровых установок и методов бурения сланцев за последние годы. Сочетая в себе семь проверенных на практике и запатентованных технологий, устьевая система с вертикальным подъемным устройством Baker Hughes (RSH) предлагает множество вариантов для обеспечения максимальной эффективности, безопасности и управления скважиной практически для любой конструкции скважины и требований в современных сланцевых месторождениях, Рис.

Эта статья начинается с исторического обзора отраслевых технологий и методов контроля скважин во время бурения.Затем в нем рассматривается одно из полевых применений устьевой системы RSH, а также безопасность, экономия средств и времени, достигнутая оператором.

Рис. 1. На устье скважины Riser Speed ​​Head (RSH) достигается максимальная безопасность и контроль скважины практически для любой конструкции скважины и требований в современных сланцевых месторождениях. Здесь показана модель RSH-2N 135/8 дюймов. Его корпус преобразован в соответствие стандарту API 135/8 дюйма. фланцевый профиль для установки стандартных головок НКТ.

История показала, что бурение на нефть и газ может быть опасной операцией.Противовыбросовый превентор (BOP) является стандартным отраслевым оборудованием для управления скважиной во время бурения. Противовыбросовые превенторы имеют решающее значение для безопасных буровых работ, и они подключаются к устьевому оборудованию при установке обсадных труб.

На протяжении многих десятилетий традиционные устьевые системы следовали проверенным традиционным установкам. В скважинах с наземной обсадной колонной и эксплуатационной обсадной колонной традиционно использовалась обычная обсадная колонна SOW, за которой следовала колонна насосно-компрессорных труб, герметизированная над эксплуатационной обсадной колонной.

На более глубоких скважинах с промежуточной обсадной колонной типичная система состояла из обычной головки обсадной колонны, устанавливаемой под сварку (SOW), дополнительной катушки обсадной колонны, герметизированной над промежуточной обсадной колонной, и головки насосно-компрессорной трубы, герметизированной над эксплуатационной обсадной колонной.Ранняя промышленная разработка штабелированных, состоящих из двух частей многокамерных устьевых систем была направлена ​​на эти более глубокие скважины, чтобы сэкономить время буровой установки и удерживать противовыбросовый превентор за счет спуска промежуточных колонн с подвесками обсадных труб оправки и уплотнителями через противовыбросовый превентор. Это позволяло BOP оставаться на месте вместо того, чтобы сниматься, при установке клиньев, разрезании обсадной колонны и установке катушки обсадной колонны до того, как BOP снова будет заканчиваться.

Спрос на эффективность ведет к улучшениям. Совсем недавно операторы попросили повысить эффективность операций противовыбросового превентора.Это побудило рынок найти способы сократить время подключения противовыбросового превентора к устьевому оборудованию. Инженеры Baker Hughes спроектировали семейство систем RSH таким образом, чтобы оно включало в себя как одинарные, так и, для скважин с промежуточными обсадными колоннами, блоки с несколькими чашами. Эта функция устраняет необходимость в соединении прессовочного превентора вниз и вверх для дополнительной экономии времени и лучшего управления скважиной для оператора.

Кроме того, рыночный спрос на повышение эффективности побудил некоторых операторов использовать райзерные системы во время буровых работ.Семейство инструментов устьевой системы RSH включает соединители райзера, которые быстро устанавливаются и снимаются с кондуктора без сварки. Резьбовой фланец корпуса системы позволяет установить корпус с помощью инструмента для спуска через стояк, что позволяет цементировать обсадную колонну с помощью инструмента для спуска корпуса. После завершения операций с райзером инструмент для корпуса снимается, и фланец API навинчивается на корпус. Также можно использовать дополнительный сверлильный адаптер USC-1 Speed ​​Clamp Connector.

В течение десятилетий для традиционного устьевого оборудования требовалось приваривать устье к обсадной колонне. Исторические инциденты, многие из которых дорого обходились операторам, были результатом некачественных сварочных работ. Кроме того, сварка корпуса — трудоемкая и опасная операция, так как требует наличия легковоспламеняющегося оборудования вблизи колодца. Стремясь повысить производительность и повысить безопасность операций, операторы нуждаются в устьевом оборудовании, которое может исключить огневые работы и повысить скорость операций.Устьевые системы RSH ответили на этот призыв оригинальной конструкцией, исключающей сварку в полевых условиях и время ожидания цементирования. Корпус системы с одной или несколькими чашами функционирует как подвеска обсадной колонны, существенно сокращая время ожидания цементирования и устраняя опасные операции, связанные со сваркой вблизи активной скважины.

Обеспечение контроля скважины с помощью оборудования, работающего под давлением, во время буровых работ за последние десятилетия привело к значительному сдвигу в безопасности и эффективности. Двадцать с лишним лет назад фланцевые соединения просто собирались с помощью молотковых гаечных ключей, не зная полностью крутящий момент, прилагаемый к соединению, и полагались только на испытания давлением как признак надлежащего свинчивания.Эта элементарная операция превратилась в использование гидравлических динамометрических ключей, которые обеспечивали значение крутящего момента и обеспечивали в целом более безопасные операции. Хотя использование гидравлических динамометрических ключей для фланцевых соединений и безопаснее, оно может занять много времени.

Рис. 2. Быстроразъемные соединения, такие как патентованный USC-1, обеспечивают экономию времени функции, которые могут быть особенно полезны при групповом бурении. Они также обеспечивают значительную операционную эффективность, такую ​​как время нахождения сосков до 75%.

Быстроразъемные соединения. Теперь быстроразъемные соединения заменяют традиционные фланцевые соединения в соответствии с новейшей отраслевой тенденцией, чтобы обеспечить экономическую эффективность для операторов. Чтобы удовлетворить этот рыночный спрос, Baker Hughes разработала запатентованный быстроразъемный соединитель, названный адаптером для бурения USC-1, как часть семейства устьевых систем RSH. Этот адаптер предоставляет операторам функции и опции, позволяющие экономить время, что может быть особенно ценно при периодическом бурении, так как промежуточные обсадные трубы устанавливаются между скважинами.Быстроразъемное соединение USC-1 обеспечивает оперативную эффективность при одновременном включении противовыбросового превентора. Это сокращает время установки соски противовыбросового превентора на 75%, сокращая количество рабочих в подвале колодца. Эта функция становится вдвое более ценной, когда промежуточные струны устанавливаются партиями на пэд, Рис. 2 .

После завершения буровых работ корпус системы RSH переходит в режим заканчивания со стандартным фланцевым верхним соединением API для операций по гидроразрыву и добыче.

По мере того, как за последнее десятилетие бурение с использованием кустовых площадок с несколькими скважинами стало отраслевым стандартом, количество скважин на кусты увеличилось с одной скважины на куст до нескольких скважин на подушку.Бурение на кустах с несколькими скважинами значительно повысило эффективность и снизило стоимость буровых работ. Следовательно, операторы перешли к периодической установке определенных обсадных колонн для дальнейшего повышения эффективности и экономии времени на кривых бурения.

Это привело к появлению шагающих буровых установок и дополнительных требований к устьевым системам в целом. Операторы запросили более компактные кожухи устья скважины, чтобы свести к минимуму глубину погреба и низкопрофильные временные заглушки для заброшенных скважин, поскольку для передвижения от скважины к скважине во время кустового бурения с несколькими скважинами требовалось шагающее оборудование.Семейство инструментов системы RSH включает в себя временные заглушки, которые обеспечивают доступ для вмешательства под высоким давлением на минимально возможной высоте. Кроме того, кожухи устья скважины RSH имеют низкопрофильную конструкцию, которая может удовлетворить рыночный спрос на операции кустового бурения с несколькими скважинами.

Жесткие требования к управлению скважиной для устьевых систем когда-то были исключительны для крупных компаний, но они принимаются все большим числом американских операторов. На протяжении десятилетий для установки эксплуатационных обсадных труб широко использовались скользящие подвески.Эта простая технология экономична и функциональна, но ей присущи риски, связанные с контролем скважины, проблемы безопасности и непроизводительное время, связанное с отсечкой обсадной колонны, когда противовыбросовый превентор снят, а кольцевое уплотнение еще не испытано. Универсальные системы RSH предлагают операторам выбор канавок для подвески обсадных труб оправки и отдельных комплектов насадки, чтобы можно было испытать кольцевые уплотнения вокруг эксплуатационной обсадной колонны перед опусканием ниппеля противовыбросового превентора и настроить обратный клапан (BPV) при максимальном двухбарьерном стволе требуется контроль.

Требования к верхнему приводу. Стремление отрасли к более длинным боковым стволам и большему количеству зон трещиноватости на скважину привело к появлению буровых установок с технологией верхнего привода. Верхние приводы, которые могли толкать и вращать буровое долото дальше в горизонтальном стволе скважины, по сути, стали стандартом для буровых установок, работающих при разработке сланцев. Горизонтальные боковые секции скважин становились настолько длинными, что эксплуатационные обсадные колонны могли заклинивать при выполнении новых соединений, и их приходилось вращать, чтобы в достаточной степени снизить трение в боковом стволе, чтобы обсадную колонну можно было спустить полностью до носка. ствол скважины.

Рис. 3. Подвеска обсадной колонны с вращающейся оправкой, запатентованная RT, позволяет поворачивать подвеску эксплуатационной обсадной колонны вправо при посадке подвески во время цементирования.

Устьевая система RSH включает в себя запатентованную подвеску обсадной колонны с правым крутящим моментом (RT), которая позволяет вращать эксплуатационные обсадные колонны с высоким крутящим моментом для спуска в современные расширенные боковые стволы скважин, включая вращение колонны во время цементирования, Рис. 3 . Инструменты для спуска обсадной колонны (CRT) также увеличили экономию времени для операторов, поскольку система манипулирования обсадной колонной позволяет ускорить ее свинчивание.

Кроме того, семейство монтажных инструментов системы RSH включает в себя инструменты для спуска, которые позволяют быстро и безопасно спускать обсадные колонны с крутящим моментом для промежуточных и эксплуатационных обсадных колонн. Эти инструменты взаимодействуют с ЭЛТ для эксплуатационных обсадных колонн. По запросу могут быть предоставлены крутящиеся подвесы RT для промежуточных обсадных колонн.

Скорость, экономичность и безопасность — ключевые факторы для операторов. Приведенный ниже пример демонстрирует экономию времени на скважину, повышение безопасности операций и чистое сокращение затрат на бурение, которое может принести устьевая система.

ОТВЕЧАЕТ НОВЫМ ТРЕБОВАНИЯМ УПРАВЛЕНИЯ СКВАЖИНАМИ

Вызов. Оператор в бассейне Делавэр (Пермский бассейн) в Западном Техасе использовал трубку Baker Hughes 135/8 дюйма. Цельная многокомпонентная система 5M Land Speedhead (LSH) — более экономичная моноблочная альтернатива двухкомпонентным многокомпонентным системам первого поколения со стопорными винтами. Программа оператора по обсадке скважин была следующей: 20-дюйм. проводник, 133/8-дюйм. поверхностный кожух, 95/8 дюйма промежуточный кожух и 51/2-дюйм. производственная оболочка.

Система LSH позволила сократить время установки и повысить безопасность по сравнению с традиционными сборными устьями скважин. Основные преимущества системы LSH с точки зрения времени и безопасности были основаны на ее способности устанавливать промежуточную обсадную колонну и бурить на полную глубину (TD) без удаления BOP.

Однако новое требование к внутреннему контролю скважины — испытание давлением кольцевых уплотнений на эксплуатационной колонне перед снятием противовыбросового превентора — вынудило оператора рассмотреть альтернативу системе LSH.Оператор исследовал другие устьевые системы и технологии, которые могут удовлетворить новые требования. Такая система также должна снизить общие затраты на скважину за счет сокращения времени установки устья скважины во время бурения и одновременного снижения рисков для безопасности рабочих.

Решение. Цельная устьевая система RSH-2-N компании Baker Hughes с несколькими чашами предлагала конструктивные особенности и возможности, необходимые для достижения целей по сокращению времени и затрат оператора при соблюдении новых требований к управлению скважиной.

Таблица 1

Путем сравнения времени буровой установки для задач, связанных с устьем скважины, связанных с установкой предыдущей системы LSH (, таблица 1, ), с оценками времени, связанными с установкой системы RSH (, таблица 2, ), решение о внедрении RSH-2 -N система была ясна.

Результаты. Устьевая система RSH-2-N была спроектирована таким образом, чтобы иметь функции, позволяющие сократить время установки для каждой работы. Была запланирована и выполнена 10-скважинная пилотная программа для оценки производительности системы.Чтобы определить общую экономию, оператор записал и сравнил фактическое время установки системы RSH-2-N со временем установки предыдущей системы LSH (, таблица 2, ).

Таблица 2

Общая экономия времени на скважину составила от 9,5 до 13,25 часов, что на 84% сократило время монтажа устья скважины. Это также привело к снижению чистых затрат на бурение примерно на 220 000 долларов по сравнению с программой с 10 скважинами, Рис. 4.

В планах на будущее — установка партии 95/8 дюймов.промежуточная обсадная колонна, а также установка бурового адаптера RSH-USC-1. Ожидается, что после реализации эти действия позволят сэкономить дополнительно от 2,5 до 3,5 часов на каждую скважину.

ЗДАНИЕ ДОКАЗАННЫХ ХАРАКТЕРИСТИК

Практический пример, представленный здесь, является последним примером того, как устьевая система RSH приносит пользу операторам сланцевой добычи в США. С момента ее внедрения в 2016 году во время бурения сланцевых скважин в США было установлено и внедрено более 5000 систем RSH. уровень принятия и принятия является убедительным свидетельством безопасности, надежности и экономической эффективности системы RSH.

Успехи, достигнутые в США, привлекают внимание операторов в других частях мира. Система RSH теперь доступна на международных рынках, где операторы ищут аналогичные безопасные, рентабельные и эффективные решения по управлению скважиной для своих сложных операций по бурению скважин.

Бланка Монтойя БЛАНКА МОНТОЯ (BLANCA MONTOYA) — старший менеджер по продукции в Baker Hughes.Она управляет производственными линиями RSH (Riser Speed ​​Head) на устье скважины и ГРП. Ее опыт включает проектирование устьев скважин и подводных стволов, а также 12-летний опыт работы в отрасли. Г-жа Монтойя — инженер-механик и имеет лицензию Техасского совета профессиональных инженеров.

Knox Wright KNOX WRIGHT — U.С. Менеджер по техническим услугам в подразделении по контролю давления в компании Baker Hughes. Имея более 32 лет работы в области устья скважин на поверхности, он работает с техническими группами и заказчиками, чтобы предоставить инновационные устьевые решения проблем на рынке нефти и газа США. До Baker Hughes г-н Райт занимался вопросами обеспечения качества, технических продаж, а также проектирования и разработки продукции.

  • Соответствующие статьи не найдены

.

Previous PostNextNext Post

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *